Previous |  Up |  Next

Article

Keywords:
iteration semigroup; diffeomorphism; ordered semigroup; Baire property
Summary:
Let $F$ be a disjoint iteration semigroup of $C^n$ diffeomorphisms mapping a real open interval $I\ne \varnothing $ onto $I$. It is proved that if $F$ has a dense orbit possesing a subset of the second category with the Baire property, then $F=\lbrace f_t\:\,f_t(x)=f^{-1}(f(x)+t)\text{ for every }x\in I, t\in R\rbrace $ for some $C^n$ diffeomorphism $f$ of $I$ onto the set of all reals $R$. The paper generalizes some results of J.A.Baker and G.Blanton [3].
References:
[1] Aczél, J.: Funktionskomposition, Iterationsgruppen und Gewebe. Arch. Math. (Basel) 17 (1966), 469-475. MR 0203624
[2] Baker, J.: A note on iteration groups. Aequationes Math. 28 (1985), 129-131. MR 0781217 | Zbl 0582.26001
[3] Baker, J., Blanton, G.: Iteration groups generated by $C^n$ functions. Arch. Math. (Brno) 18 (1982), 121-127. MR 0682099
[4] Blanton, G.: Smoothness in disjoint groups of real functions under composition. C.R.Math. Rep. Acad. Sci. Canada 5 (1983), 169-172. MR 0713677 | Zbl 0518.26003
[5] Blanton, G.: Smoothness in disjoint groups of real functions under composition. Aequationes Math. 35 (1988), 1-16. MR 0939617 | Zbl 0702.26010
[6] Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963. MR 0171864 | Zbl 0137.02001
[7] Kominek, Z., Kuczma, M.: Therems of Berstein-Doetsch, Piccard and Mehdi and semilinear topology. Arch. Math. (Basel) 52 (1989), 595-602. MR 1007635
[8] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488-494. MR 0669790 | Zbl 0524.34070
[9] Oxtoby, J.: Measure and Category. Graduate Texts in Mathematics 2, Springer-Verlag, New York-Heidelberg-Berlin, 1971. MR 0584443 | Zbl 0217.09201
Partner of
EuDML logo