Previous |  Up |  Next

Article

Keywords:
tolerance relation; finite algebra; lattice; tolerance trivial algebra; Mal’cev function; Pixley function; arithmetical algebra
Summary:
An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
References:
[1] Abbot, J. C.: Semi-boolean algebra. Matem. Vestnik 4 (1967), 177–198. MR 0239957
[2] Chajda, I.: Algebraic Theory of Tolerance Relations. Publ. Palacký University Olomouc 1991 (Czech Republic). Zbl 0747.08001
[3] Chajda, I.: Tolerances in permutable algebras. Czech. Math. J. 38 (1988), 218–225. MR 0946289
[4] Chajda, I.: On the existence of non-trivial tolerances in permutable algebras. Czech. Math. J. 40 (1990), 598–600. MR 1084895 | Zbl 0742.08002
[5] Chajda, I.: Every at most four element algebra has a Mal’cev theory for permutability. Math. Slovaca 41 (1991), 35–39. MR 1094982 | Zbl 0779.08001
[6] Chajda, I., Czédli, G.: Maltsev functions on small algebras. Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. MR 1266817
[7] Chajda, I., Niederle, J., Zelinka, B.: On the existence conditions for compatible tolerances. Czech. Math. J. 26 (1976), 304–311. MR 0401561
[8] Chajda, I., Zelinka, B.: Tolerances and congruences in implication algebras. Czech. Math. J. 38 (1988), 207–217. MR 0946288
[9] Cornish, W. H.: On Iséki’s BCK-algebras. Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. MR 0647169 | Zbl 0486.03033
[10] Gumm, H.-P.: Is there a Mal’cev theory for single algebras?. Algebra Univ. 8 (1978), 320–329. MR 0472647 | Zbl 0382.08003
[11] Mal’cev, A. I: On the general theory of algebraic systems (Russian). Matem. Sbornik 35 (1954), 3–20.
[12] Pixley, A. F.: Completeness in arithmetical algebras. Algebra Univ. 2 (1972), 177–192. MR 0321843 | Zbl 0254.08010
[13] Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. Math. Soc. 14 (1963). MR 0146104 | Zbl 0113.24804
[14] Raftery, J. G., Rosenberg, I. G., Sturm, T.: Tolerance relations and BCK-algebras. Math. Japon. 36 (1991). MR 1109222
[15] Sturm, T.: On commutative BCK-algebras. Math. Japon. 27 (1982), 197–212. MR 0655224 | Zbl 0481.03043
[16] Tanaka, S.: On $\wedge $-commutative algebras. Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. MR 0419222
[17] Werner, H.: A Mal’cev condition for admissible relations. Algebra Univ. 3 (1973), 263. MR 0330009 | Zbl 0276.08004
Partner of
EuDML logo