Article
Keywords:
arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent
Summary:
It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.
References:
[2] Bula, W. D., Oversteegen, L. G.:
A characterization of smooth Cantor bouquets. Proc. Amer. Math. Soc. 108 (1990), 529-534.
MR 0991691
[3] Charatonik, J. J., Spyrou, P.:
Depth of dendroids. Math. Pannonica, 5/1 (1993), 113-119.
MR 1279349
[5] Cook, H.:
Tree-likeness of dendroids and $\lambda $-dendroids. Fund. Math. 68 (1970), 19-22.
MR 0261558
[6] Iliadis, S. D.:
On classification of hereditarily decomposable continua. Moscow Univ. Math. Bull. 29 (1974), 94-99.
MR 0367944 |
Zbl 0304.54035
[7] Jänich, K.:
Topology. Springer Verlag, 1984.
MR 0734483
[8] Lelek, A.:
On plane dendroids and their end points in the classical sense. Fund. Math. 49 (1961), 301-319.
MR 0133806 |
Zbl 0099.17701
[9] Mackowiak, T.:
Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 157 (1979), 1-91.
MR 0522934 |
Zbl 0444.54021
[10] Mohler, L.:
The depth in tranches in $\lambda $-dendroids. Proc. Amer. Math. Soc 96 (1986), 715-720.
MR 0826508
[12] Rakowski, Z .M.:
On decompositions of Hausdorff continua. Dissertationes Math. (Rozprawy Mat.) 170 (1980), 1-33.
MR 0575753 |
Zbl 0455.54006
[13] Spyrou, P.:
Finite decompositions and the depth of a continuum. Houston J. Math. 12 (1986), 587-599.
MR 0873653 |
Zbl 0713.54038