Previous |  Up |  Next

Article

Keywords:
weighted inequalities; Hankel; K- and Y-transformations
Summary:
We give conditions on pairs of non-negative functions $u$ and $v$ which are sufficient that, for $0<q<p$, $p>1$ \[ \left[ \int _0^\infty |u(x)(Tf)(x)|^q\, dx\right]^{\frac{1}{q}} \le C\left[ \int _0^\infty |v(x)f(x)|^p\, dx\right]^{\frac{1}{p}}\,, \] where $T$ is the Hankel-, K-, or the Y-transformations.
References:
[1] Benedetto, J. J., Heinig, H. P., Johnson, R.: Weighted Hardy spaces and the Laplace transform II. Math. Nachr. 132 (1987), 29-55. MR 0910042
[2] Emara, S. A., Heinig, H. P.: Weighted norm inequalities for the Hankel- and K̲-transformations. Proc. Roy. Soc. Edinburgh Sect A 103 (1986), 325-333. MR 0866845
[3] Emara, S.: A class of weighted inequalities. Harmonic Analysis, ICM-90 Satelite conf. Proc., Japan 1990, Springer-Verlag (1991). MR 1261432 | Zbl 0772.46011
[4] Erdelyi, A.(Ed.): Tables of integral transforms. vol. II, McGraw Hill, New York, 1954. MR 0065685 | Zbl 0058.34103
[5] Gradshteyn, I. G., Ryzhik, I. M.: Tables of integrals, series and products. New York, Academic Press, 1980.
[6] Gustavsson, J.: A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42 (1978), 289-305. MR 0512275 | Zbl 0389.46024
[7] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge Univ. Press, 1967.
[8] Heinig, H.P.: Interpolation of quasi-normed spaces involving weights. Canad. Math. Soc. Conf. Proc. 1 (1981), 245-267. MR 0670108 | Zbl 0561.46036
[9] Heinig, H. P.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33 (1984), 573-582. MR 0749315 | Zbl 0511.46031
[10] Heywood, P., Rooney, P. G.: A weighted norm inequality for the Hankel transformation. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 45-50. MR 0781084
[11] Johnson, R.: Temperatures, Riesz potentials and Lipschitz spaces of Herz. Proc. London Math. Soc. (3) 27 (1973), 290-316. MR 0374895
[12] Kalugina, T. F.: Interpolation of Banach spaces with functional parameter. The Reiteration theorem. Vestnik Moskovskoyo University, Ser. 1, Math. Mech. 30(6) (1975) (Engl. Transl. Moscow Univ. Math. Bull. 30 (6) (1975), 108-116). MR 0407616
[13] Maz’ja, V. G.: Sobolev spaces. Springer-Verlag, Berlin, 1985. MR 0817985 | Zbl 0692.46023
[14] Sinnamon. G.: A weighted gradient inequality. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 329-335. MR 1007530 | Zbl 0686.26004
Partner of
EuDML logo