Article
Keywords:
Krull ring; Marot ring; divisor theory; essential valuation; discrete rank one valuation ring
Summary:
It is proved that a Marot ring is a Krull ring if and only if its monoid of regular elements is a Krull monoid.
References:
[1] Borewicz, Z. I., Shafarevich, I. R.: Number Theory, 3rd ed. (Russian). Moskva 1985.
[2] Geroldinger, A.:
On the arithmetic of certain not integrally closed noetherian domains. Comm. Alg. 19 (1991), 685-698.
MR 1100372
[3] Halter-Koch, F.:
Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82.
MR 1091957 |
Zbl 0742.20060
[5] Kang, B. G.:
A characterization of Krull rings with zero divisors. J. Pure Appl. Algebra 72 (1991), 33-38.
MR 1115565 |
Zbl 0752.13014
[6] Portelli, D., Spangher, W.:
Krull rings with zero divisors. Comm. Alg. 11 (1983), 1817-1851.
MR 0703237