Previous |  Up |  Next

Article

Keywords:
Krull ring; Marot ring; divisor theory; essential valuation; discrete rank one valuation ring
Summary:
It is proved that a Marot ring is a Krull ring if and only if its monoid of regular elements is a Krull monoid.
References:
[1] Borewicz, Z. I., Shafarevich, I. R.: Number Theory, 3rd ed. (Russian). Moskva 1985.
[2] Geroldinger, A.: On the arithmetic of certain not integrally closed noetherian domains. Comm. Alg. 19 (1991), 685-698. MR 1100372
[3] Halter-Koch, F.: Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82. MR 1091957 | Zbl 0742.20060
[4] Huckaba, J. A.: Commutative rings with zero divisors. Marcel Dekker, 1988. MR 0938741 | Zbl 0637.13001
[5] Kang, B. G.: A characterization of Krull rings with zero divisors. J. Pure Appl. Algebra 72 (1991), 33-38. MR 1115565 | Zbl 0752.13014
[6] Portelli, D., Spangher, W.: Krull rings with zero divisors. Comm. Alg. 11 (1983), 1817-1851. MR 0703237
[7] Skula, L.: On $c$-semigroups. Acta Arith. 31 (1976), 247-256. MR 0444817 | Zbl 0303.13014
Partner of
EuDML logo