[1] Appell, P.: Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris 91 (1880), 211-214.
[2] Borůvka, O.: Lineare Differentialtransformationen 2. Ordnung. VEB Verlag, Berlin, 1967, (English Translation, English Universities Press, London, 1973).
[3] Došlá, Z.:
Higher monotonicity properties of special functions: application on Bessel case $|\nu | < 1/2$. Comment. Math. Univ. Carolinae 31 (1990), 233-241.
MR 1077894
[4] de Haan, L.: On regular variation and its application to the weak convergence of sample extremes. Mathematical Centre Tracts, vol. 32, Mathematisch Centrum, Amsterdam, 1975.
[5] Feller, W.:
An introduction to probability theory and its applications. vol. 2, 2nd ed., Wiley, 1971.
Zbl 0219.60003
[6] Hartman, P.:
On differential equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 83 (1961), 154-188.
MR 0123039
[7] Hartman, P.:
On differential equations, Volterra equations and the function $J_\nu ^2 + Y_\nu ^2$. Amer. J. Math. 95 (1973), 553-593.
MR 0333308
[8] de La Vallée Poussin, Ch.-J.: Cours d’analyse infinitésimale. tome 1 , 12th ed, Louvain and Paris, 1959.
[9] Lorch, L., Szego, P.:
Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73.
MR 0147695
[10] Lorch, L., Muldoon, M. E., Szego, P.:
Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22 (1970), 1238-1265.
MR 0274845
[11] Muldoon, M. E.:
Higher monotonicity properties of certain Sturm-Liouville functions, V. Proc. Roy. Soc. Edinburgh 77A (1977), 23-37.
MR 0445033 |
Zbl 0361.34027
[12] Seneta, E.:
Regularly varying functions. Lecture Notes in Math., no. 508, Springer, 1976.
MR 0453936 |
Zbl 0324.26002
[13] Vosmanský, J.:
Monotonicity properties of zeros of the differential equation $y {^{\prime \prime }} + q(x)y = 0$. Arch. Math. (Brno) 6 (1970), 37-74.
MR 0296420
[14] Williamson, R. E.:
Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207.
MR 0077581 |
Zbl 0070.28501