Article
Keywords:
median algebra; group; line; direct product
Summary:
There is proved that a convex maximal line in a median group $G$, containing 0, is a direct factor of $G$.
References:
[1] Bandelt H.J. and Hedlíková J.:
Median algebras. Discrete Math. 45 (1983), 1-30.
MR 0700848
[2] Hedlíková J.:
Chains in modular ternary latticoids. Math. Slovaca 27 (1977), 249-256.
MR 0536142
[4] Kiss S.A.:
A ternary operation in distributive lattices. Bull. Amer. Math. Soc. 53 (1947), 749-752.
MR 0021540 |
Zbl 0031.25002
[6] Kolibiar M.:
Discret product decompositions of median groups. General Algebra 1988, Proceedings of the Conference in Krems (Australia), August 1988. North Holland 1990, 139-151.
MR 1060351
[7] Sholander M.:
Trees, lattices, order, and betweenness. Proc. Amer. Math. Soc. 3 (1952), 369-381.
MR 0048405
[9] Marcisová T.: Groups with an operation median. Komenský University Bratislava (1977), Thesis.