Previous |  Up |  Next

Article

Keywords:
median algebra; group; line; direct product
Summary:
There is proved that a convex maximal line in a median group $G$, containing 0, is a direct factor of $G$.
References:
[1] Bandelt H.J. and Hedlíková J.: Median algebras. Discrete Math. 45 (1983), 1-30. MR 0700848
[2] Hedlíková J.: Chains in modular ternary latticoids. Math. Slovaca 27 (1977), 249-256. MR 0536142
[3] Isbell J.R.: Median algebra. Trans. Amer. Math. Soc. 260 (1980), 319-362. MR 0574784 | Zbl 0446.06007
[4] Kiss S.A.: A ternary operation in distributive lattices. Bull. Amer. Math. Soc. 53 (1947), 749-752. MR 0021540 | Zbl 0031.25002
[5] Kolibiar M.: Median groups. Archivum Math. (Brno) 25 (1989), 73-82. MR 1189201 | Zbl 0738.06016
[6] Kolibiar M.: Discret product decompositions of median groups. General Algebra 1988, Proceedings of the Conference in Krems (Australia), August 1988. North Holland 1990, 139-151. MR 1060351
[7] Sholander M.: Trees, lattices, order, and betweenness. Proc. Amer. Math. Soc. 3 (1952), 369-381. MR 0048405
[8] Sholander M.: Medians, lattices, and trees. Proc. Amer. Math. Soc. 5 (1954), 808-812. MR 0064750 | Zbl 0056.26201
[9] Marcisová T.: Groups with an operation median. Komenský University Bratislava (1977), Thesis.
Partner of
EuDML logo