[1] A. Abian:
A fixed point theorem for nonincreasing mappings. Boll. Un. Mat. Ital. 2 (1969), 200-201.
MR 0244110
[2] S. Abian A. Brown:
A theorem on partially ordered sets with applications to fixed point theorem. Canad. J. Math. 13 (1961), 78-82.
MR 0123492
[3] A. Davis:
A characterization of complete lattice. Pacific J. Math. 5 (1955), 311-319.
MR 0074377
[4] P. H. Edelman:
On a fixed point theorem for partially ordered set. Discrete Math. 15 (1979), 117-119.
MR 0523085
[5] Dj. Kurepa:
Fixpoints of monotone mapping of oredered sets. Glasnik Mat. fiz. astr. 19 (1964), 167-173.
MR 0181590
[6] Dj. Kurepa:
Fixpoints of decreasing mapping of ordered sets. Publ. Inst. Math. Beograd (N. S.) 18 (32) (1975), 111-116.
MR 0369189
[7] F. Metcalf T. H. Payne:
On the existence of fixed points in a totally ordered set. Proc. Amer. Math. Soc. 31 (1972), 441-444.
MR 0286722
[8] H., M. Höft:
Some fixed point theorems for partially ordered sets. Canad. J. Math. 28 (1976), 992-997.
MR 0419306
[9] I. Rival:
A fixed point theorem for finite partially ordered sets. J. Combin. Theory Seг. A 21 (1976), 309-318.
MR 0419308
[10] R. Smithson:
Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367.
MR 0316323 |
Zbl 0248.06002
[11] Z. Shmuely:
Fixed points of antitone mappings. Proc. Amer. Math. Soc. 52 (1975), 503-505.
MR 0373982 |
Zbl 0287.06005
[12] A. Taгski:
A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309.
MR 0074376
[13] M. Taskovič: Banach's mappings of fixed points on spaces and ordered sets. Thesis, Math. Balcanica 9 (1979), p. 130.
[14] M. Taskovič:
Partially ordered sets and some fixed point theorems. Publ. Inst. Math. Beograd (N. S.) 27 (41) (1980), 241-247.
MR 0621956
[15] L. E. Ward:
Completeness in semilattices. Canad. J. Math. 9 (1957), 578-582.
MR 0091264
[16] W. S. Wong:
Common fixed points of commuting monotone mappings. Canad. J. Math. 19 (1967), 617-620.
MR 0210627 |
Zbl 0153.02702