Previous |  Up |  Next

Article

References:
[1] A. Abian: A fixed point theorem for nonincreasing mappings. Boll. Un. Mat. Ital. 2 (1969), 200-201. MR 0244110
[2] S. Abian A. Brown: A theorem on partially ordered sets with applications to fixed point theorem. Canad. J. Math. 13 (1961), 78-82. MR 0123492
[3] A. Davis: A characterization of complete lattice. Pacific J. Math. 5 (1955), 311-319. MR 0074377
[4] P. H. Edelman: On a fixed point theorem for partially ordered set. Discrete Math. 15 (1979), 117-119. MR 0523085
[5] Dj. Kurepa: Fixpoints of monotone mapping of oredered sets. Glasnik Mat. fiz. astr. 19 (1964), 167-173. MR 0181590
[6] Dj. Kurepa: Fixpoints of decreasing mapping of ordered sets. Publ. Inst. Math. Beograd (N. S.) 18 (32) (1975), 111-116. MR 0369189
[7] F. Metcalf T. H. Payne: On the existence of fixed points in a totally ordered set. Proc. Amer. Math. Soc. 31 (1972), 441-444. MR 0286722
[8] H., M. Höft: Some fixed point theorems for partially ordered sets. Canad. J. Math. 28 (1976), 992-997. MR 0419306
[9] I. Rival: A fixed point theorem for finite partially ordered sets. J. Combin. Theory Seг. A 21 (1976), 309-318. MR 0419308
[10] R. Smithson: Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367. MR 0316323 | Zbl 0248.06002
[11] Z. Shmuely: Fixed points of antitone mappings. Proc. Amer. Math. Soc. 52 (1975), 503-505. MR 0373982 | Zbl 0287.06005
[12] A. Taгski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. MR 0074376
[13] M. Taskovič: Banach's mappings of fixed points on spaces and ordered sets. Thesis, Math. Balcanica 9 (1979), p. 130.
[14] M. Taskovič: Partially ordered sets and some fixed point theorems. Publ. Inst. Math. Beograd (N. S.) 27 (41) (1980), 241-247. MR 0621956
[15] L. E. Ward: Completeness in semilattices. Canad. J. Math. 9 (1957), 578-582. MR 0091264
[16] W. S. Wong: Common fixed points of commuting monotone mappings. Canad. J. Math. 19 (1967), 617-620. MR 0210627 | Zbl 0153.02702
Partner of
EuDML logo