Previous |  Up |  Next

Article

References:
[1] B. Banaschewski, R. Harting: $\Vee$-rings and locales. communication at the Category Theory Conference in Murten (1984).
[2] B. Banaschewski, R. Harting: Lattice aspects of radical ideals and choice principles. Proc. London Math. Soc. (3) 50 (1985), 385-404. MR 0779396 | Zbl 0569.16003
[3] F. Borceux H. Simmons G. Van den Bossche: A sheaf representation for modules with applications to Gelfand rings. Proc. London Math. Soc. (2) 48 (1984), 230-246. MR 0729069
[4] F. Borceux, G. Van den Bossche: Quantales and their Sheaves. Order 3 (1986), 61-87. MR 0850399 | Zbl 0595.18003
[5] F. Borceux J. Rosický, G. Van den Bossche: Quantales and $C^*$-algebras. in preparation.
[6] C. H. Dowker, D. Strauss: Separation axioms for frames. Coll. Math. Soc. J. Bolyai 8 (1974), 223-240. MR 0394559 | Zbl 0293.54001
[7] J. R. Isbell: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. MR 0358725 | Zbl 0246.54028
[8] P. T. Johnstone: Stone spaces. Cambridge University Press, Cambridge 1982. MR 0698074 | Zbl 0499.54001
[9] P. T. Johnstone: Almost maximal ideals. Fund. Math. 123 (1984), 197-209. MR 0761975 | Zbl 0552.06004
[10] P. T. Johnstone: Wallman compactification of locales. Houston J. Math. 10 (1984), 201-206. MR 0744904 | Zbl 0549.54018
[11] I. Kříž: A direct description of uniform completion in locales and a characterisation of LT-groups. Cahiers Top. et Géom. Diff. XXVII-1 (1986), 19-34. MR 0845407
[12] J. Paseka: Regular and normal quantales. Arch. Math. (Brno), (4) 22 (1986), 203-210. MR 0868535 | Zbl 0612.06012
[13] H. Simmons: The lattice theoretical part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41-48. MR 0493959
[14] M. Ward, R. P. Dilworth: Residuated lattices. Trans. Amer. Math. Soc. 45 (1939), 335-354. MR 1501995 | Zbl 0021.10801
Partner of
EuDML logo