Previous |  Up |  Next

Article

References:
[1] S. Abian, A. B. Brown: A theorem on partiatly ordered sets, with applications to fixed point theorems. Canad. J. Math. 13 (1961) 78-82. MR 0123492
[2] N. Bourbaki: Sur le théorème de Zorn. Arch. Math. (Basel) 2 (1949/50), 434-437. MR 0047739
[3] A. C. Davis: A characterization of complete lattices. Pacific J. Math. 5 (1955), 311-319. MR 0074377 | Zbl 0064.26101
[4] M. Erné: Chains, directed sets and continuity. Prepгint N° 175, Institut für Mathematik, Universität Hannoveг (1984).
[5] W. Felscher: Naive Mengen und abstrakte Zahlen III. B. I. - Wissenschaftsverlag, Mannheim (1979). MR 0536486 | Zbl 0409.04002
[6] I. Guessarian: Some fixpoint techniques in algebraic structures and applications to computer science. Lab. Inf. Theor. et Progr. 87-7, University Paris 7 (1987). MR 0929163 | Zbl 0634.68009
[7] J. Klimeš: Fixed point characterization of completeness on lattices for relatively isotone mappings. Arch. Math. (Brno) 20 (1984), 125-132. MR 0784863
[8] S. R. Kogalovskiî: On linearly complete ordered sets. [Russian], Uspehi Mat. Nauk. 19 (1964), No. 2 (116), 147-150. MR 0161809
[9] M. Kolibiar: Fixed point theorems for ordered sets. Stud. Sci. Math. Hungar. 17 (1982), 45-50. MR 0761523 | Zbl 0554.06005
[10] G. Markowsky: Chain-complete posets and directed sets with applications. Algebra Univ. 6 (1976), 53-68. MR 0398913 | Zbl 0332.06001
[11] A. Tarski: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. MR 0074376 | Zbl 0064.26004
[12] R. E. Smithson: Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367. MR 0316323 | Zbl 0248.06002
[13] E. S. Wolk: Dedekind completeness and a fixed-point theorem. Canad. J. Math. 9 (1957), 400-405. MR 0086788 | Zbl 0086.04302
[14] E. Zermelo: Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65 (1908), 107-128. MR 1511462
Partner of
EuDML logo