[1] S. Abian, A. B. Brown:
A theorem on partiatly ordered sets, with applications to fixed point theorems. Canad. J. Math. 13 (1961) 78-82.
MR 0123492
[2] N. Bourbaki:
Sur le théorème de Zorn. Arch. Math. (Basel) 2 (1949/50), 434-437.
MR 0047739
[3] A. C. Davis:
A characterization of complete lattices. Pacific J. Math. 5 (1955), 311-319.
MR 0074377 |
Zbl 0064.26101
[4] M. Erné: Chains, directed sets and continuity. Prepгint N° 175, Institut für Mathematik, Universität Hannoveг (1984).
[5] W. Felscher:
Naive Mengen und abstrakte Zahlen III. B. I. - Wissenschaftsverlag, Mannheim (1979).
MR 0536486 |
Zbl 0409.04002
[6] I. Guessarian:
Some fixpoint techniques in algebraic structures and applications to computer science. Lab. Inf. Theor. et Progr. 87-7, University Paris 7 (1987).
MR 0929163 |
Zbl 0634.68009
[7] J. Klimeš:
Fixed point characterization of completeness on lattices for relatively isotone mappings. Arch. Math. (Brno) 20 (1984), 125-132.
MR 0784863
[8] S. R. Kogalovskiî:
On linearly complete ordered sets. [Russian], Uspehi Mat. Nauk. 19 (1964), No. 2 (116), 147-150.
MR 0161809
[9] M. Kolibiar:
Fixed point theorems for ordered sets. Stud. Sci. Math. Hungar. 17 (1982), 45-50.
MR 0761523 |
Zbl 0554.06005
[10] G. Markowsky:
Chain-complete posets and directed sets with applications. Algebra Univ. 6 (1976), 53-68.
MR 0398913 |
Zbl 0332.06001
[11] A. Tarski:
A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309.
MR 0074376 |
Zbl 0064.26004
[12] R. E. Smithson:
Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367.
MR 0316323 |
Zbl 0248.06002
[13] E. S. Wolk:
Dedekind completeness and a fixed-point theorem. Canad. J. Math. 9 (1957), 400-405.
MR 0086788 |
Zbl 0086.04302
[14] E. Zermelo:
Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65 (1908), 107-128.
MR 1511462