Previous |  Up |  Next

Article

References:
[C-dW-G] Cahen M., de Wilde M., Gutt S.: Local cohomology of the algebra of $C^/infty $ -functions on a connected manifold. Lett. Math. Phys. 4 (1980), 157-167. MR 0583079
[Ca] Cap A.: Natural operators between vector valued differential forms. Proc. Winter School on Geometry and Physics, Srní 1990, to appear. MR 1151896
[D-C] Dieudonné J. A., Carrell J. B.: Invariant Theory, Old and New. Academic Press, New York - London, 1971. MR 0279102
[dW-L] de Wilde M., Lecomte P.: Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields on a manifold. Composito Math. 45 (1982), 199-205. MR 0651981
[K-M] Kolář I., Michor P.: All natural concomitants of vector valued differential forms. Proc. Winter School on Geometry and Physics, Srní 1987, Supp. ai Rend. Circolo Matematico di Palermo II-16 (1987), 101-108. MR 0946715
[K-M-S] Kolář I., Michor P., Slovák J.: Natural Operators in Differential Geometry. to appear in Springer Ergebnisse. MR 1202431
[Ko] Kolář I.: Some natural operators in differential geometry. Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. MR 0923346
[Kr-M] Krupka D., Mikolášová V.: On the uniqueness of some differential invariants: d, [ , ], $\nabla $. Czechoslovak Math. J. 34 (1984), 588-597. MR 0764440
[Mi] Michor P.: Remarks on the Frölicher-Nijenhuis bracket. Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. MR 0923350
[Sl] Slovák J.: Peetre Theorem for Nonlinear Operators. Ann. Global Anal. Geom. 6/3 (1988), 273-283. MR 0982996
[vS] van Strien S.: Unicity of the Lie Product. Compositio Math. 40 (1980), 79-85. MR 0558259 | Zbl 0425.58001
Partner of
EuDML logo