Previous |  Up |  Next

Article

References:
[1] Attouch H., Damlamian A.: On multivalued evolution equations in Hilbert spaces. Israel J. Math. 12 (1972), 373-390. MR 0346609 | Zbl 0243.35080
[2] Aubin J. P., Cellina A.: Differential inclusions. Springer, Berlin, 1984. MR 0755330 | Zbl 0538.34007
[3] Barbu V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden, Netherlands, 1976. MR 0390843 | Zbl 0328.47035
[4] Brezis H.: Operateurs maximaux monotones. North Holland, Amsterdam, 1973. Zbl 0252.47055
[5] Chuong P. V.: Some results on density of extreme selections for measurable multifunctions. Math. Nachr. 126 (1986), 313-326. MR 0846583 | Zbl 0612.28007
[6] Delahaye J. P., Denel J.: The continuities of the point-to-set maps, definitions and equivalences. Math. Programming Study 10 (1979), 8-12.
[7] Diestel J., Uhl J .J.: Vector measures. A. M. S. Providence, R. I., Math. Surveys IS (1977). MR 0453964 | Zbl 0369.46039
[8] Dundorf N., Schwartz J.: Linear operators I. Wiley, New York, 1958.
[9] Edgar G.: Measurability in a Banach apace II. Indiana Univ. Math. Jour. 38 (1979), 559-579. MR 0542944
[10] Fryszkowski A.: Continuous selections for a class of nonconvex multivalued maps. Studia Math. 78 (1983), 163-174. MR 0730018
[11] Kenmochi N.: Some nonlinear parabolic varionational inequalities. Israel J. Math. 22 (1975), 304-331. MR 0399662
[12] Laurent J. P.: Approximation et optimisation. Paris, 1972. Zbl 0238.90058
[13] Moreau J. J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equations 26 (1977), 347-374. MR 0508661
[14] Papageorgiou N. S.: Convergence theorems for Banach apace valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595
[15] Papageorgiou N. S.: Differential inclusions with state constraints. Proc. Edinburgh Math. Soc. 32 (1988), 81-98. MR 0981995
[16] Rockafellar R. T.: Conjugate duality and optimization. Conference Board of Math. Sci Series, Philadelphia, SIAM Publications 16 (1974). MR 0373611 | Zbl 0296.90036
[17] Saint Beuve M. F.: Une extension des théorémes de Novikov et d'Arsenin. exposé no. 18, Seminaire d'Analyse Convéxe 11 (1981), 1801-1810.
[18] Vrabie I.: The nonlinear veraion of Paxy's local existence theorem. Israel J. Math. 32 (1972), 221-235. MR 0531265
[19] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[20] Watanabe J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. MR 0326522 | Zbl 0253.35053
[21] Yotsutani S.: Evolution equations associated with subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. MR 0544681
Partner of
EuDML logo