Previous |  Up |  Next

Article

References:
[1] Alonso J., Ullan A.: Moduli of convexity. Functional Analysis and Approximation, Edited by P. L. Papini, Bagni di Lucca, Italy, May 16-20, 1988, 25-33. MR 1001569
[2] Banas J.: On moduli of smoothness of Banach spaces. Bull. Pol. Acad. Sci. Math. 34 (1986), 287-293. MR 0874871 | Zbl 0606.46010
[3] Berg I. D., Sims B.: Denseness of operators which attain their numerical radius. Ser. A, J. Austral. Math. Soc. 36 (1984), 130-133. MR 0720006 | Zbl 0561.47004
[4] Clarkson J. A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396-414. MR 1501880 | Zbl 0015.35604
[5] Day M. M.: Uniform convexity in factor and conjugate spaces. Ann. of Math. 45 (1944), 375-385. MR 0010779 | Zbl 0063.01058
[6] Day M. M.: Normed linear spaces. Ergebnisse Mathematik und ihrer Grenzgebiete, 3rd Ed., Vol. 21, Springer Verlag, 1973. MR 0344849 | Zbl 0268.46013
[7] Diestel J.: Geometry of Banach spaces. Selected topics, Lecture Notes, Springer Verlag, 1975. MR 0461094 | Zbl 0307.46009
[8] Van Dulst D.: Reflexive and superreflexive Banach spaces. Math. Centre Tracts 102, Amsterdam, 1978. MR 0513590 | Zbl 0412.46006
[9] Goebel K., Kirk W. A.: Topics in metric fixed point theory. Cambridge University Press, to appear. MR 1074005 | Zbl 0708.47031
[10] Köthe G.: Topological vector spaces I. Springer Verlag, 1969. MR 0248498
[11] Lindenstrauss J.: On the modulus of smoothness and divergent series in Banach spaces. Mich. Math. J. 10 (1963), 241-252. MR 0169061 | Zbl 0115.10001
[12] Lindenstrauss J.,Tzafriri L.: Classical Banach space. Lecture Notes, Springer Verlag, 1973. MR 0415253
[13] Milman V. D.: The geometric theory of Banach spaces, Part II. in Russian, Uspehi Mat. Nauk 26 (1971), 73-149. MR 0420226
[14] Nordlander G.: The modulus of convexity in normed linear spaces. Ark. Math. 4 (1960), 15-17. MR 0140915 | Zbl 0092.11402
[15] Opial Z.: Lecture notes on nonexpansive and monotone mappings in Banach spaces. Lecture Notes, Center for Dynamical Systems, Brown University, 1967.
Partner of
EuDML logo