[1] Aronszajan N.:
The theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404.
MR 0051437
[2] Berlinet A.:
Espaces autoreproduisants et mesure empirique. Méthodes splines en estimation fonctionnde, These de 3 -$^{ème}$ cycle, Lille, 1980.
Zbl 0436.60011
[4] Herrndorf N.:
The invariance principle for $\varphi$-mixing sequences. no 1, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108.
MR 0699789
[5] Herrndorf N.:
A functional central limit theorem for weakly dependent sequences of random variables. no 1, Ann. Probab. 12 (1984), 141-153.
MR 0723735 |
Zbl 0536.60030
[7] Ibragimov I. A.:
Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962), 349-382.
MR 0148125 |
Zbl 0119.14204
[8] Mason D.:
Weak convergence of the weighted empirical quantile process in $L^2[0,1]$. no 1, Ann. Probab. 12 (1984), 243-255.
MR 0723743
[9] Mori T., Yoshihara K. I.:
A note on the central limit theorem for the stationary strongmixing sequences. Yokohama Math. J. 34 (1986), 143-146.
MR 0886062
[11] Peligrad M.:
An invariance principle for dependent random variables. no 4, Z. Wahrsch. verw. Gebiete 57 (1981), 495-507.
MR 0631373 |
Zbl 0485.60032
[12] Phillip W.:
The central limit problem for mixing sequences of random variables. Z. Wahrsch. verw. Gebiete 12 (1969), 155-171.
MR 0246356
[13] Suquet C.: Espaces autoreproduisants et mesures aléatoires. Thése de 3-$^{ème}$ cycle, Lille, 1986.
[14] Volný D.:
A central limit theorem for non stationary mixing processes. no 2, Comment. Math. Univ. Carolinae 30 (1989), 405-407.
MR 1014142
[15] Withers C. S.:
Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 57 (1981), n°-4, 509-534;
MR 0631374 |
Zbl 0451.60027
[15b] Withers C. S.:
Corrigendum to Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 63 (1983), 555.
MR 0705626 |
Zbl 0513.60034