Previous |  Up |  Next

Article

References:
[1] A. B. Бабин M. H. Bишик: Aттpaктopы эвoлюциoнных ypавнeний c чaстными пpoизводными и оценки их размеpности. Уcпeхи мат. наук 38 (1983), 133-185.
[2] J. Ball: Stability theory for an extensible beam. J. Diff. Equations 14 (1973), 399-418. MR 0331921 | Zbl 0247.73054
[3] P. Biller: Exponential decay of solutions of damped nonlinear hyperbolic equations. No. 7, Nonlinear analysis 11 (1987), 841-849. MR 0898578
[4] J. E. Billoti J. P. LaSalle: Dissipative periodic processes. Bull. Amer. Math. Soc. 6 (1971), 1082-1089. MR 0284682
[5] W. E. Fitzgibbon: Strongly damped quasilinear Evolution equations. J. of Math. Anal, and Appl. 79 (1981), 536-550. MR 0606499 | Zbl 0476.35040
[6] J. M. Ghidaglia, R. Temam: Attractors for Damved Nonlinear Hyperbolic Equations. J. de Math. Pures et Appl. 79 (1987), 273-319. MR 0913856
[7] J. K. Hale N. Stavrakakis: Limiting behavior of Linearly damped Hyperbolic equations. Preprint, Brown - University, jan. 1986.
[8] D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Math., 840, Berlin: Springer Verlag, 1981. MR 0610244 | Zbl 0456.35001
[9] P. Massat: Attractivity properties of $\alpha$-contractions. J. of Diff. Equations 48 (1983), 326-333. MR 0702423
[10] P. Massat: Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349. MR 0702424
[11] G. F. Webb: Existence and asymptotic behavior for a strongly damped nonlinear wave equations. Canad. J. of Math. 32 (1980), 631-643. MR 0586981
Partner of
EuDML logo