Previous |  Up |  Next

Article

References:
[AHM] N. D. Alikakos P. Hess H. Matano: Discrete order preserving semigroups and stability for periodic parabolic differential equations. preprint. MR 1027972
[H1] J. K. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York 1977. MR 0508721 | Zbl 0352.34001
[H2] J. K. Hale: Asymptotic Behaviour of Dissipative Systems. AMS Publications, Providence 1988. MR 0941371
[He] P. Hess: On stabilization of discrete strongly order-preserving semigroups and dynamical processes. Proceedings of Trends in Semigroup Theory and Applications, M. Dekker (ed.), to appear. MR 1009399
[Hi1] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. I: Limit sets. SIAM J. Math. Anal. 13 (1982), 167-179. MR 0647119
[Hi2] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. II: Convergence almost everywhere. SIAM J. Math. Anal. 16 (1985), 423-439. MR 0783970 | Zbl 0658.34023
[Hi3] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. III: Competing species. Nonlinearity 1 (1988), 51-71. MR 0928948
[Hi4] M. W. Hirsch: The dynamical systems approach to differential equations. Bull. AMS 11 (1984), 1-64. MR 0741723 | Zbl 0541.34026
[Hi5] M. W. Hirsch: Differential equations and convergence almost everywhere in strongly monotone flows. Contemporary Math. 17, Providence 1983, 267-285. MR 0706104
[Hi6] M. W. Hirsch: Stability and convergence in strongly monotone dynamical sets. J. Reine Angew. Math. 383 (1988), 1-58. MR 0921986
[M1] H. Matano: Existence of nontrivial unstable sets for equilibriums of strongly orderpreserving systems. J. Fac. Sci. Univ. Tokyo 30 (1983), 645-673. MR 0731522
[M2] H. Matano: Correction to: "Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems". J. Fac. Sci. Univ. Tokyo 34 (1987), 853-855. MR 0927615 | Zbl 0656.35009
[M3] H. Matano: Strong comparison principle in nonlinear parabolic equations. in "Nonlinear Parabolic Equations: Qualitative Properties of Solutions", L. Boccardo, A. Tesei (eds.), 148-155, Pitman, London 1987. MR 0901104 | Zbl 0664.35048
[Mi] J. Mierczyński: On a generic behaviour in strongly cooperative differential equations. Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. MR 1062664
[MP] J. Mierczyński P. Poláčik: Symmetry actions on strongly monotone dynamical systems. Math. Annalen 283 (1989), 1-11. MR 0973801
[PM] J. Palis W. de Melo: Geometric Theory of Dynamical Systems. Springer - Verlag, New York 1982. MR 0669541
[P1] P. Poláčik: Convergence in smooth strongly monotone flows defined by semilinear parabolic equations. J. Diff. Eqn. 79 (1989), 89-110. MR 0997611
[P2] P. Poláčik: Domains of attraction of equilibria and monotonicity properties of convergent trajectories in semilinear parabolic systems admitting strong comparison principle. J. Reine Angew. Math. 400 (1989), 32-56. MR 1013724
[P3] P. Poláčik: Generic properties of strongly monotone semiflows defined by ordinary and parabolic differential equations. Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. MR 1062675
[S1] H. L. Smith: Monotone semiflows generated by functional differential equations. J. Diff. Eqn. 66 (1987), 420-442. MR 0876806 | Zbl 0612.34067
[S2] H. L. Smith: Systems of ordinary differential equations which generate an order preserving flow, A survey of results. SIAM Review 30 (1988), 87-114. MR 0931279 | Zbl 0674.34012
[ST1] H. L. Smith H. R. Thieme: Monotone semiflows in scalar non-quasimonotone functional differential equations. J. Math. Anal. Appl., to appear. MR 1067429
[ST2] H. L. Smith H. R. Thieme: Remarks on monotone dynamical systems. preprint.
Partner of
EuDML logo