Previous |  Up |  Next

Article

References:
[1] Alikakos N. D.: $L^p$ bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations 4 (1979), 827-868. MR 0537465
[2] Amann H.: Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Rat. Mech. Anal. 92 (1986), 153-192. MR 0816618 | Zbl 0596.35061
[3] DiBenedetto E.: Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32 (1983), 83-118. MR 0684758 | Zbl 0526.35042
[4] Fila M.: Boundedness of global solutions for the heat equation with nonlinear boundary conditions. Comment. Math. Univ. Carolinae 30 (1989), 479-484. MR 1031865 | Zbl 0702.35141
[5] Filo J.: $L^∞$-estimate for nonlinear diffusion equations. manuscript. Zbl 0849.35061
[6] Friedman A., McLeod B.: Blow-up of positive aolutiona of aemilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. MR 0783924
[7] Ladyzhenskaya O. A., Solonikov V. A., Uraltseva N. N.: Linear and Quasi-linear Equations of Parabolic Type. Nauka, Moscow, 1967.
[8] Levine H. A., Payne L. E.: Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time. J. Diff. Eqns. 16 (1974), 319-334. MR 0470481
[9] Nakao M.: Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations. Nonlinear Analysis 10 (1986), 299-314. MR 0834507 | Zbl 0595.35058
[10] Nakao M.: $L^p$ -estimates of solutions of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37 (1985), 41-63. MR 0769776 | Zbl 0584.65073
[11] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[12] Rothe F.: Uniform bounds from bounded $L_p$-functional$ in reaction-diffusion equations. J. Diff. Eqns. 45 (1982), 207-233. MR 0665998
Partner of
EuDML logo