Previous |  Up |  Next

Article

References:
[1] Ahmad S.: Nonselfadjoint resonance problems with unbounded perturbations. Nonlinear Analysis T.M.A. 10 (1986), 147-156. MR 0825213 | Zbl 0599.35069
[2] Ahmad S.: A resonance problem in which the nonlinearity may grow linearly. Proc. Amer. Math. Society 93 (1984), 381-384. MR 0759657
[3] Anane A.: Simplicate et isolation de la premiere valeur propre du p-Laplacien avec poids. C.R. Acad. Sci. Paris 305 1 (1987), 725-728. MR 0920052
[4] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Analysis T.M.A. 10 (1986), 1083-1103. MR 0857742
[5] Drábek P.: On the resonance problem with nonlinearity which has arbitrary linear growth. J. Math. Analysis. Appl. 127 (1987), 435-442. MR 0915069
[6] Fučík S., Nečas J., Souček J., Souček V.: Spectral Analysis of Nonlinear Operators. Lecture Notes in Math. 346, Springer, Berlin, 1973. MR 0467421
[7] Landesman E. M., Lazer A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. MR 0267269 | Zbl 0193.39203
[8] Lions J. L.: Qulques méthodes de résolution de problemes aux limites nonlinéaires. Dunod Gauthier - Villars, Paris, 1969. MR 0259693
[9] Llibourty L.: Traite de Glaceologie. Masson and Lie, Paris (I) 1964 et (II) 1965.
[10] Péllisier M. C., Reynand L.: Étude d'un modéle mathématique d'écoulement de glacier. C.R. Acad. Sci. Paris 279 (1979), 531-534.
[11] Tolksdorf P.: Regularity of a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150. MR 0727034
[12] Anane A., Gossez J. P.: Strongly nonlinear elliptic problems near resonance: a variational approach. preprint. MR 1070239 | Zbl 0715.35029
Partner of
EuDML logo