Previous |  Up |  Next

Article

References:
[1] Ash R. B.: Real Analysis and Probability. Academic Press, New York, 1972. MR 0435320
[2] Christensen J. P. R.: Topology and Borel Structure. North Holland, Amsterdam, 1974. MR 0348724 | Zbl 0273.28001
[3] Dynkin E. B.: Stochastic concave dynamic programming. Mat. Sb. 87 (1972), 490-503; English transl.: Math. USSR-Sb. 16 (1972), 501-515. MR 0300629
[4] Kucia A.: Carathéodory type selectors. submitted. Zbl 0593.54018
[5] Miller D. E.: Borel selectors for separated quotients. Pacific J. Math. 91 (1980), 187-198. MR 0612898 | Zbl 0477.54008
[6] Sarbadhikari H., Srivastava S. M.: Random Tietze and Dugundji extension theorems. J. Math. Anal. Appl. (to appear).
[7] Schäl M.: A selection theorem for optimization problems. Arch. Math. 25 (1974), 219-224. MR 0346632
[8] Schäl M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrsch. Verw. Gebiete 32 (1975), 179-196. MR 0378841
[9] Schäl M.: On dynamic programming: compactness of the space of policies. Stochastic Process. Appl. 3 (1975), 345-364. MR 0386706
[10] Schäl M.: Addendum to [7], [8] and [9]. Technical Report, Univ. Bonn, 1977.
[11] Ślęzak W.: On Carathéodory's selectors for multifunctions with values in S-contractible spaces. Problemy Math. 7 (1986), 21-34. MR 0871801 | Zbl 0619.28007
[12] Wagner D. H.: Survey of measurable selection theorems. SIAM J. Control 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
Partner of
EuDML logo