Previous |  Up |  Next

Article

References:
[1] C. H. DOWKER: A problem in set theory. J. London Math. Soc. 27 (1952), 371-374. MR 0047741 | Zbl 0046.05203
[2] M. E. RUDIN: Two questions of Dowker. Proceedings Amer. Math. Soc. Vol. 91 (1984), 155-158. MR 0735583
[3] S. TODORČEVIĆ: Forcing positive partition relations. Trans. Amer. Math. Soc. 280 (1983), 703-720. MR 0716846
[4] V. PONOMAREV L. SAPIRO: Absolutes of topological spaces and their continuous maps. Uspehi Math. 31 (1976), 121-136 (Sov. Math. Surv. 21 (1976), 138-154). MR 0451216
[5] C. J. KNIGHT: Box topologies. Quart. J. Math., Oxford 15 (1964), 41-54. MR 0160184 | Zbl 0122.17404
[6] L. B. LAWRENCE: The box product of countably many copies of the rationals is consistently paracompact. (to appear). MR 0961613 | Zbl 0704.54013
[7] M. E. RUDIN: The box product of countably many compact metric spaces. Gen. Top. Appl. 2 (1972), 293-298. MR 0324619 | Zbl 0243.54015
[8] K. KUNEN: Paracompactness of box products of compact spaces. Trans. Amer. Math. Soc. 240 (1978), 307-316. MR 0514975 | Zbl 0386.54003
[9] E. van DOUWEN: The box products of countably many metrizable spaces need not be normal. Fund. Math. 88 (1975), 127-132. MR 0385781
[10] M. E. RUDIN: A normal screenable nonparacompact space. Top. Appl. 15 (1983), 313-322. MR 0694550
[11] M. E. RUDIN: Two nonmetrizable manifolds. (to appear). MR 1058794 | Zbl 0708.54012
[12] M. E. RUDIN: Countable point separating open covers of manifolds. Houston J. (to appear). MR 1022067
[13] Z. BALOGH: Locally nice spaces under Martin's Axiom. Comment. Math. Univ. Carolinae 24 (1983), 63-87. MR 0703926 | Zbl 0529.54006
[14] M. E. RUDIN: A normal space X for which $X*I$ is not normal. Fund. Math. LXXIII (1971), 179-186. MR 0293583
[15] K. CHIBA T. PRZYMUSINSKI M. RUDIN: Normality of products and Morita's conjectures. Top. Appl. 22 (1986), 19-32. MR 0831178
[16] A. BEŠLAGlČ M. RUDIN: Set theoretic constructions of non-shrinking open covers. Top. Appl. 20 (1985), 167-177. MR 0800847
[17] A. BEŠLAGlČ: Normality in products. Top. Appl. 22 (1986), 71-82.
[18] A. V. ARHANGEL'SKII: A survey of $C_p$-theory. Q&A in Gen. Top. 5 (1978), 1-109. MR 0909494
[19] Jiang SH0ULI: Every strict p-space is $\theta $-refinable. Top. Proc. 12 (1987) (to appear).
[20] K. Kunen J. E. Vaughan: Handbook of Set Theoretic Topology. editors, Elsevier Sci. Pub. BV (1984). MR 0776619
[21] W. FLEISSNER: Normal Moore spaces in the constructive universe. Proc. Amer. Math. Soc. 46 (1974), 294-298. MR 0362240
[22] C. NAVY: Paracompactness in para-Lindelöf spaces. Thesis, University of Wisconsin, Madison, Wis. (1981).
Partner of
EuDML logo