Previous |  Up |  Next

Article

References:
[1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances. North-Holland, Amsterdam, 1980. MR 0563329
[2] A. GENEL J. LINDENSTRAUSS: An example concerning fixed points. Israel J. Math. 22 (1975), 81-85. MR 0390847
[3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021. MR 0586863
[4] K. GOEBEL W. A. KIRK: Iteration processes for nonexpansive mappings. Contemporary Mathematics 21 (1983), 115-123. MR 0729507
[5] T. L. HAYDEN T. J. SUFFRIOGE: Biholomorphic maps in Hilbert space have a fixed point. Pacif. J. Math. 38 (1971), 419-422. MR 0305158
[6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten. Über. Deutsch. Math. Verein 32 (1923), 175-176.
[7] S. KOBAYASHI: Invariant distances for projective structures. Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. MR 0663030 | Zbl 0482.51015
[8] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball. Colloq. Math., in print. MR 0964327 | Zbl 0674.47039
[9] T. KUCZUMOW A. STACHURA: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I. Comment. Math. Univ. Carolinae 29 (1988), 399-402. MR 0972824
[10] S. REICH: Averaged mappings in the Hilbert ball. J. Math. Anal. Appl. 109(1985), 199-206. MR 0796053 | Zbl 0588.47061
[11] I. J. SCHOENBERG: On a theorem of Kirszbraun and Valentine. Amer. Math. Monthly 60 (1953), 620-622. MR 0058232
[12] T. J. SUFFRIDGE: Common fixed points of commuting holomorphic mappings. The Michigan Math. 3. 21 (1975), 309-314. MR 0367661
Partner of
EuDML logo