[1] T. FRANZONI E. VESENTINI:
Holomorphic maps and invariant distances. North-Holland, Amsterdam, 1980.
MR 0563329
[2] A. GENEL J. LINDENSTRAUSS:
An example concerning fixed points. Israel J. Math. 22 (1975), 81-85.
MR 0390847
[3] K. GOEBEL T. SĘK0WSKI A. STACHURA:
Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021.
MR 0586863
[4] K. GOEBEL W. A. KIRK:
Iteration processes for nonexpansive mappings. Contemporary Mathematics 21 (1983), 115-123.
MR 0729507
[5] T. L. HAYDEN T. J. SUFFRIOGE:
Biholomorphic maps in Hilbert space have a fixed point. Pacif. J. Math. 38 (1971), 419-422.
MR 0305158
[6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten. Über. Deutsch. Math. Verein 32 (1923), 175-176.
[7] S. KOBAYASHI:
Invariant distances for projective structures. Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161.
MR 0663030 |
Zbl 0482.51015
[8] T. KUCZUMOW:
Fixed points of holomorphic mappings in the Hilbert ball. Colloq. Math., in print.
MR 0964327 |
Zbl 0674.47039
[9] T. KUCZUMOW A. STACHURA:
Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I. Comment. Math. Univ. Carolinae 29 (1988), 399-402.
MR 0972824
[10] S. REICH:
Averaged mappings in the Hilbert ball. J. Math. Anal. Appl. 109(1985), 199-206.
MR 0796053 |
Zbl 0588.47061
[11] I. J. SCHOENBERG:
On a theorem of Kirszbraun and Valentine. Amer. Math. Monthly 60 (1953), 620-622.
MR 0058232
[12] T. J. SUFFRIDGE:
Common fixed points of commuting holomorphic mappings. The Michigan Math. 3. 21 (1975), 309-314.
MR 0367661