Previous |  Up |  Next

Article

References:
[1] J. BALATONI A. RÉNYI: On the notion of entropy (Hungarian). Publ. Math. Inst. Hungarian Acad. Sci. 1 (1956), 5-40. - English translation: Selected papers of Alfred Rényi, vol. I, pp. 558-584, Akadémiai Kiadó, Budapest, 1987.
[2] M. KATĚTOV: Extended Shannon entropies I. Czechoslovak Math. J. 33 (108) (1983), 564-601. MR 0721088
[3] M. KATĚTOV: Extended Shannon entropies II. Czechoslovak Math. J. 35 (110) (1985), 565-616. MR 0809043
[4] M. KATĚTOV: On extended Shannon entropies and the epsilon entropy. Comment. Math. Univ. Carolinae 27 (1986), 519-543. MR 0873625
[5] M. KATĚTOV: On the Rényi dimension. Comment. Math. Univ. Carolinae 27 (1986), 741-753. MR 0874669
[6] M. KATĚTOV: On dimensions of semimetrized measure spaces. Comment. Math. Univ. Carolinae 28 (1987), 399-411. MR 0912568
[7] E. C. POSNER E. R. RODEMICH H. RUMSEY, Jr.: Epsilon entropy of stochastic processes. Ann. Math. Statist. 38 (1967), 1000-1020. MR 0211457
[8] E. C. POSNER E. R. RODEMICH: Differential entropy and tiling. J. Statist. Phys. 1 (1969), 57-69. MR 0250349
[9] A. RÉNYI: On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 10 (1959), 193-215. MR 0107575
[10] A. RÉNYI: Dimension, entropy and information. Trans. 2nd Prague Conf. Information Theory, pp. 545-556, Prague, 1960. MR 0129049
[11] C. R. SHANNON: A mathematical theory of communication. Bell System Tech. J. 27 (1948), 379-423, 623-656. MR 0026286 | Zbl 1154.94303
Partner of
EuDML logo