Previous |  Up |  Next

Article

References:
[1] D. G. ARONSON M. G. CRANDALL L. A. PELETIER: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Analysis 6 (1982), 1001-1022. MR 0678053
[2] J. M. BALL: Remarks on blow-up and nonexistence theorems for nonlinear evolution equation. Quart. J. Math. Oxford 28 (1977), 473-486. MR 0473484
[3] M. BERTCH R. ROSTAMIAN: The principle of linearized stability for a class of degenerate diffusion equations. J. Differential Equations 57 (1985), 373-405. MR 0790282
[4] H. BREZIS L. NIRENBERG: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983), 437-477. MR 0709644
[5] M. FILA, J. FILO: Stabilization of solutions of certain one-dimensional degenerate diffusion equations. Mathematica Slovaca 37 (1987), 217-229. MR 0899439 | Zbl 0619.35064
[6] M. FILA J. FILO: A blow-up result for nonlinear diffusion equations. to appear in Mathematica Slovaca. MR 1016350
[7] M. FILA J. FILO: Global behaviour of solutions to some nonlinear diffusion equations. to appear. MR 1046291
[8] J. FILO: On solutions of perturbed fast diffusion equation. Aplikace Matematiky 32 (1987) . MR 0909544
[9] V. A. GALAKTIONOV: A boundary value problem for the nonlinear parabolic equation $u_t = {\Delta}u^{\alpha+1} + u{\beta}$. Differential Equations 17 (1981), 551-555 (Russian). MR 0616920
[10] B. KAWOHL: Rearrangements and Convexity of Level Sets in PDE. Springer-Velag, Berlin, 1985 . MR 0810619 | Zbl 0593.35002
[11] M. LANGLAIS D. PHILLIPS: Stabilization of solutions of nonlinear and degenerate evolution equations. Nonlinear Analysis 9 (1985), 321-333. MR 0783581
[12] H. A. LEVINE P. E. SACKS: Some existence and nonexistence theorems for solutions of degenerate parabolic equations. J. Differential Equations 52 (1984), 135-161. MR 0741265
[13] P. L. LIONS: Asymptotic behavior of some nonlinear heat equations. Physica D 5 (1982), 293-306. MR 0680566
[14] H. MATANO: Existence of nontrivial unstable sets for equilibгiums of strongly order-preseving systems. J. Fac. Sc. Univ. Tokyo 30 (1984), 645-673. MR 0731522
[15] M. NAKAO: Existence, nonexistence and some asymptotic behavior of global solutions of a nonlinear degenerate parabolic equation. Math. Rep., College Gen. Ed. Kyushu Univ., 1983, 1-21 . MR 0737351
[16] M. NAKAO: $L^p$-estimates of solutions of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37 (1985), 41-63. MR 0769776 | Zbl 0584.65073
[17] W. M. NI P. E. SACKS J. TAVANTZIS: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differential Equations 54 (1984), 97-120. MR 0756548
[18] L. E. PAYNE D. H. SATTINGER: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22 (1975), 273-303. MR 0402291
[19] M. H. PROTTER H. F. WEINBERGER: Maximum Principles in Partial Differential Equations. Prentice Hall, Englewood Cliffs, 1967. MR 0219861
[20] P. E. SACKS: Global behavior for a class of nonlinear evolution equations. SIAM J. Math. Anal. 16 (1985). MR 0777465 | Zbl 0572.35062
[21] N. STERNBERG: Blow up near higher modes of nonlinear wave equations. Trans. Amer. Math. Soc. 296 (1986), 315-325. MR 0837814
[22] M. TSUTSUMI: Existence and nonexistence of global solutions for nonlinear parabolic equations. Publ. R.I.M.S., Қyoto Univ. 8 (1972/73), 211-229. MR 0312079 | Zbl 0248.35074
[23] F. WEISSLER: Local existence and nonexistence for semilinear parabolic equations in $L^p$. Indiana Univ. Math. J. 29 (1980), 79-102. MR 0554819
Partner of
EuDML logo