Previous |  Up |  Next

Article

References:
[1] P. BOJAN: A generalization of theorems on the existence of competitive economic equilibrium to the case of infinitely many commodities. Mathematica Balcanica 4 (1974), 490-494. MR 0373568 | Zbl 0314.90017
[2] K. FAN: Some properties of convex sets related to fixed point theorems. Mathematische Annalen 266 (1984), 519-537. MR 0735533 | Zbl 0515.47029
[3] M. FLORENZANO: On the existence of equilibria in economies with an infinite-dimensional commodity space. Journal of Mathematical Economics 12 (1983), 207-219. MR 0743035 | Zbl 0535.90020
[4] G. JAMESON: Ordered Linear Spaces. Springer-Verlag, Berlin/Heidelberg/New York, 1970. MR 0438077 | Zbl 0196.13401
[5] G. MEHTA: Fixed points, equilibria and maximal elements in linear topological spaces. Commentationes Mathematicae Universitatis Carolinae 28 (1987), 377-385. MR 0904761 | Zbl 0632.47041
[6] G. MEHTA E. TARAFDAR: Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed point theorem of Tarafdar. Journal of Economic Theory 41 (1987), 333-339. MR 0882999
[7] E. TARAFDAR: A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewicz's theorem. 1986, Journal of Mathematical Analysis and Applications (to appear). MR 0917380
[8] S. TOUSSAINT: On the existence of equilibria in economies with infinitely many commodities. University of Mannheim Discussion Paper No. 174, 1981.
[9] N. YANNELIS: On a market equilibrium theorem with an infinite number of commodities. Journal of Mathematical Analysis and Applications 108 (1985), 595-599. MR 0793668 | Zbl 0581.90010
[10] N. YANNELIS W. ZAME: Equilibria in Banach lattices without ordered preferences. Journal of Mathematical Economics 15 (1986), 85-110. MR 0851921
Partner of
EuDML logo