Previous |  Up |  Next

Article

References:
[1] K. A. BAKER G. F. McNULTY H. WERNER: Locally finite non-finitely based varieties of algebras. Preprint 1985.
[2] S. BURRIS H. P. SANKAPPANAVAR: A course in universal algebra. Graduate Texts Math. 78. N.Y. - Heidelberg - Berlin 1981. MR 0648287
[3] M. Ch. GOLUMBIC: Algorithmic graph theory and perfect graphs. Academic Press, New York 1980. MR 0562306 | Zbl 0541.05054
[4] E. W. KISS: A note on varieties of graph algebras. Lecture Notes Math. 1149 (1985), pp. 163-166. MR 0823014 | Zbl 0572.08009
[5] E. W. KISS R. PÖSCHEL P. PRÖHLE: Subvarieties of varieties generated by graph algebras. (Manuscript 1986, in preparat.)
[6] K. KRIEGEL R. PÖSCHEL W. WESSEL: The dimension of graphs with respect to direct powers of a two-element graph. Bull. Austral. Math. Soc. (to appear). MR 0909772
[7] G. F. McNULTY C. SHALLON: Inherently nonfinitely based finite algebras. Lecture Notes Math. 1004 (1983), 206-231. MR 0716184
[8] R. H. MÖHRING F. J. RADERMACHER: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete Math. 19 (1984), 257-356. MR 0780025
[9] Sh. OATES-WILLIAMS: Murskii's algebra does not satisfy MIN. Bull. Austral. Math. Soc. 22 (1980), 199-203. MR 0598691 | Zbl 0487.08008
[10] Sh. OATES-WILLIAMS: Graphs and universal algebras. Lecture Notes Math. 884 (1981), 351-354. MR 0641259 | Zbl 0468.05068
[11] R. PÖSCHEL: Graph algebras and graph varieties. (Manuscript 1985, submitted to Algebra Univ.).
[12] R. PÖSCHEL: Shallon-algebras and varieties for graphs and relational systems. In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie. Bergakademie Freiberg, Sekt. Math., 1986, pp. 53-56. (Proc. Conf. "Algebra und Anwendungen", Siebenlehn).
[13] R. PÖSCHEL W. WESSEL: Classes of graphs which can be defined by equations in their graph algebras. Prel. report, 1984.
[14] M. POUZET I. G. ROSENBERG: Embeddings and absolute retracts of relational systems. Preprint CRM-1265, Montreal, Febr. 1985. MR 1768213
[15] A. PULTR: On product dimensions in general and that of graphs in particular. Vorträge zu Grundlagen der Informatik, Weiterbildungszentrum Math. Kybernetik u. Rechentechnik, Sektion Math., TU Dresden, Heft 27, (1977). 66-79.
[16] A. PULTR O. VINÁREK: Productive classes and subdirect irreducibility, in particular for graphs. Discrete Math. 20 (1977), 159-176. MR 0485593
[17] C. R. SHALLON: Nonfinitely based finite algebras derived from lattices. Ph. D. Dissertation, Univ. of California, Los Angeles. 1979.
Partner of
EuDML logo