Previous |  Up |  Next

Article

References:
[1] COTTLE R., DANTZIG G.: Complementary pivot theory of mathematical programming. Lin. Alg. and its Appl. 1 (1968), 103-125. MR 0226929 | Zbl 0208.45503
[2] MURTY K. G.: On the number of solutions to the complementarity problem and spanning properties of complementary cones. Lin. Alg. and its Appl. 5 (1972), 65-108. MR 0291183 | Zbl 0241.90046
[3] ROHN J.: Solving interval linear systems. Freiburger Intervall-Berichte 84/7, 1-14. Zbl 0496.65015
[4] AMBROSETTI A., PRODI G.: On the inversion of some differentiable mappings with singularities between Banach spaces. Annali Mat. Pura Appl. 93 (1972), 231-246. MR 0320844 | Zbl 0288.35020
[5] PRODI G., AMBROSETTI A.: Analisi non lineare. I quaderno, Pisa, 1973. Zbl 0352.47001
[6] FUČÍK S., KUČERA M., NEČAS J.: Ranges of nonlinear asymptotically linear operators. J. Diff. Equ. 17 (1975), 375-394. MR 0372696
[7] FUČÍK S.: Solvability of nonlinear equations and BVP. Reidel-Dordrecht & Society of Czechoslovak Math, and Phys.-Prague, 1980.
[8] RUF B.: Multiplicity results for nonlinear elliptic equations. (preprint). MR 0921246 | Zbl 0633.35027
[9] FUČÍK S., MILOTA J.: Linear and nonlinear variational inequalities on half-spaces. Comment. Math. Univ. Carolinae 16 (1975), 663-682. MR 0417877
[10] ŠVARC R.: On the solutions of equations with jumping nonlinearities. Z. angew. Math. Mech. 67 (1987), 5. MR 0907655
[11] JOHN O., QUITTNER P., STARÁ J.: Spectral properties and solvability of variational inequalities. (to be published).
[12] ŠVARC R.: The operators with jumping nonlinearities and combinatorics. (to be published). MR 0938476
[13] ŠVARC R.: Some combinatorial results about the operators with jumping nonlinearities. (to be published).
Partner of
EuDML logo