Previous |  Up |  Next

Article

References:
[1] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces. Marcel Dekker, Lecture Notes in Pure and Applied Math., vol. 60 (1980), New York and Basel. MR 0591679
[2] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ: Relations among various criteria of uniqueness for ordinary differential equations. Comment. Math. Univ. Carolinae 22 (1981), 59-70. MR 0609936
[3] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ: On the equation $x' = f(t,x)$ in Banach spaces. Comment. Math. Univ. Carolinae 23 (1982), 233-247. MR 0664970
[4] K. DEIMLING: Ordinary differential equations in Banach spaces. Lecture Notes in Math., 596, Springer Verlag 1977. MR 0463601 | Zbl 0361.34050
[5] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x'=f(t,x)$ in Banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 367-370. MR 0269957
[6] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities. Academic Press, New York 1969.
[7] S. ŁOJASIEWICZ: An introduction to the theory of real functions. PWN Warszawa, 1975 (in Polish).
[8] M. NAGUMO: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichung erster Ordnung. Japan J. Math., 3 (1926), 107-112.
[9] T. ROGERS: On Nagumo's condition. Canad. Math. Bull., 15 (1972), 609-611. MR 0311965 | Zbl 0254.34008
[10] J. SZARSKI: Differential inequalities. Monografie Matematyczne 43, Warszawa 1965. MR 0190409 | Zbl 0135.25804
[11] S. SZUFLA: On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital., 5, 15-A (1978), 535-544. MR 0521098 | Zbl 0402.34002
[12] W. WALTER: Differential and integral inequalities. Springer Verlag 1970. MR 0271508 | Zbl 0252.35005
[13] J. WITTE: Ein Eindeutigkeitssatz für die Differentialgleichung $y' = f(x,y)$. Math. Zeit.140 (1974), 281-287. MR 0377147 | Zbl 0289.34007
Partner of
EuDML logo