[1] J. BANAŚ K. GOEBEL:
Measures of noncompactness in Banach spaces. Marcel Dekker, Lecture Notes in Pure and Applied Math., vol. 60 (1980), New York and Basel.
MR 0591679
[2] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ:
Relations among various criteria of uniqueness for ordinary differential equations. Comment. Math. Univ. Carolinae 22 (1981), 59-70.
MR 0609936
[3] J. BANAŚ A. HAJNOSZ S. WĘDRYCHOWICZ:
On the equation $x' = f(t,x)$ in Banach spaces. Comment. Math. Univ. Carolinae 23 (1982), 233-247.
MR 0664970
[4] K. DEIMLING:
Ordinary differential equations in Banach spaces. Lecture Notes in Math., 596, Springer Verlag 1977.
MR 0463601 |
Zbl 0361.34050
[5] K. GOEBEL W. RZYMOWSKI:
An existence theorem for the equation $x'=f(t,x)$ in Banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 367-370.
MR 0269957
[6] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities. Academic Press, New York 1969.
[7] S. ŁOJASIEWICZ: An introduction to the theory of real functions. PWN Warszawa, 1975 (in Polish).
[8] M. NAGUMO: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichung erster Ordnung. Japan J. Math., 3 (1926), 107-112.
[11] S. SZUFLA:
On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital., 5, 15-A (1978), 535-544.
MR 0521098 |
Zbl 0402.34002
[13] J. WITTE:
Ein Eindeutigkeitssatz für die Differentialgleichung $y' = f(x,y)$. Math. Zeit.140 (1974), 281-287.
MR 0377147 |
Zbl 0289.34007