Previous |  Up |  Next

Article

References:
[1] ADIMURTHI, P. N. SRIKANTH: On exact number of solutions at infinity for Ambrosetti-Prodi class of problems. preprint.
[2] A. AMBROSETTI: Elliptic equations with jumping nonlinearities. preprint. MR 0755462 | Zbl 0589.35043
[3] A. AMBROSETTI, G. PRODI: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93 (1972), 231-246. MR 0320844 | Zbl 0288.35020
[4] V. CAPAGNA, F. DONATI: On the sign of the solutions to some semilinear Dirichlet problems. Proc. Roy. Soc. Edinburgh, to appear. MR 0807547
[5] E. N. DANCER: On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh 76A (1977), 283-300. MR 0499709 | Zbl 0351.35037
[6] D. G. DE FIGUEIREDO: Lectures on boundary value problems of the Ambrosetti-Prodi type. Atas do 12" Seminário Brasileiro de Análise, Sào Paulo (1980), 230-292.
[7] S. FUČÍK: Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat. 101 (1976), 69-87. MR 0447688
[8] S. FUČÍK, A. KUFNER: Nonlinear differential equations. Elsevier, Amsterdam, 1980. MR 0558764
[9] T. GALLOUËT, O. KAVIAN: Résultats d 'existence et de non-existence pour certains problèmes demi-lineàires a l'infini. Ann. Fac. Sc. Toulouse 3 (1981), 201-246. MR 0658734 | Zbl 0495.35001
[10] T. KATO: Perturbation theory for linear operators. Springer-Verlag, New York, 1966. MR 0203473 | Zbl 0148.12601
[11] L. NIRENBERG: Topics in nonlinear functional analysis. Lecture Notes, Courant Institute, New York, 1974. MR 0488102 | Zbl 0286.47037
[12] E. PODOLAK: On the range of operator eolations with an asymptotically nonlinear terms. Indiana Univ. Math. J. 25 - 12 (1976), 1127-1137. MR 0425698
[13] B. RUF: On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. 128 (1981),133-151. MR 0640779 | Zbl 0475.35046
[14] S. SOLIMINI: Some remarks on the number of solutions of some nonlinear elliptic problems. preprint. MR 0794004 | Zbl 0583.35044
Partner of
EuDML logo