Previous |  Up |  Next

Article

References:
[1] H. FUJITA N. SAUER: On existence of weak solutions of the Navier-Stokes equations in regions with moving boundary. J. Fac. Sci. Univ. Tokyo Sect. I A 17 (1970), 403-420. MR 0298258
[2] A. INOUE M. WAKIMOTO: On existence of solutions of the Navier-Stokes equations in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. I A 24 (1977), 303-319. MR 0481649
[3] O. A. LADYZENSKAJA V. A. SOLONNIKOV N. N. URAL'CEVA: Linear and quasilinear equations of parabolic type. vol. 23 Translation of Mathematical Monographs. MR 0241822
[4] H. MORIMOTO: On existence of periodic weak solutions of the Navier-Stokes equations in regions with periddically moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I A 18 (1971), 499-524. MR 0385354
[5] T. MYAKAWA Y. TERAMOTO: Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12 (1982), 513-528. MR 0676555
[6] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Editions de l'Académie Tchécoslovaque des Sciences, Pi-ague 1967. MR 0227584
[7] L. NIRENBERG: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, ser. III, XIII (1959), 115-162. MR 0109940 | Zbl 0088.07601
[8] M. OTANI Y. YAMADA: On the Navier-Stokes equations in a non-cylindrical domains: An approach by subdifferential operator theory. J. Pac. Sci. Univ. Tokyo Sect. I A 25 (1978), 185-204. MR 0509584
[9] R. SALVI: On existence of weak solutions of a non linear mixed problem for Navier-Stokes equations in a time dependent domain. to be published.
[10] J. SIMON: Ecoulement d'un fluide non-homogène avec densité initiale s'annullant. C.R. Acad. Sci. 287 (1978), 1009-1012. MR 0519229
Partner of
EuDML logo