Previous |  Up |  Next

Article

References:
[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. MR 0222426 | Zbl 0174.46001
[2] M. BOUDOURIDES: On bounded solutions of nonlinear ordinary differential equations. Comment. Math. Univ. Carolinae 22 (1981), 15-26. MR 0609933 | Zbl 0448.34038
[3] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
[4] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. MR 0463601 | Zbl 0361.34050
[5] K. KURATOWSKI: Sur les espaces complete. Fund. Math. 15 (1930), 301-309.
[6] R. MARTIN: Nonlinear operators and differential equations in Banach spaces. Wiley Publ., New York 1976. MR 0492671 | Zbl 0333.47023
[7] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional analysis. Ann. Math. 67 (1958), 517-573. MR 0096985
[8] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional spaces. Academic Press, New York 1966. MR 0212324
[9] B. RZEPECKI: Remarks on Schauder's fixed point principle and its applications. Bull. Acad. Polon. Sci., Sér. Math, 27 (1979), 473-480. MR 0560183 | Zbl 0435.47057
[10] B. N. SADOVSKII: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. MR 0428132
[11] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. MR 0239238 | Zbl 0177.18902
[12] S. SZUFLA: On the boundedness of solutions of non-linear differential equations in Banach spaces. Comment. Math, 21 (1979), 381-387. MR 0577527 | Zbl 0432.34040
Partner of
EuDML logo