Previous |  Up |  Next

Article

References:
[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. MR 0222426 | Zbl 0174.46001
[2] J. BANAŚ K. GOEBEL: Measure of noncompactness in Banach spaces. Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980. MR 0591679
[3] J. BANAŚ A. HAJHOSZ S. WEDRYCHOWICZ: Some generalization of Szufla's theorem for ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. 29 (1981), 459-464. MR 0646334
[4] J. DANEŠ: Some fixed point theorems. Comment. Math. Univ. Carolinae 9 (1968), 223-235. MR 0235435
[5] J. DANEŠ: On denslfying and related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators. Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
[6] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. MR 0463601 | Zbl 0361.34050
[7] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space. Bull. Acad. Polon. Sol., Sér. Sol. Math. Astronom. Phys. 28 (1970), 367-370. MR 0269957
[8] M. A. KPACHOCEЛЬCKИЙ C. Г. KPEЙH: O npинсипe ycpeднения в нeлинейной механике. Ycnexн Mат. Hayx 10 (1955), 147-152.
[9] K. KURATOWSKI: Sur les espaces complete. Fund. Math. 15 (1930), 301-309.
[10] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities. Vol. 1, Academic Press, New York 1969.
[11] B. RZEPECKI: On the operator equation in Banach spaces. Demonstratio Math. 12 (1979), 189-201. MR 0542317 | Zbl 0421.47034
[12] B. RZEPECKI: Some properties of the set of solutions on an operator equation in a Banach space. Comment. Math. 22 (1978), 467-478. MR 0519385
[13] B. RZEPECKI: On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116. MR 0653354
[14] B. RZEPECKI: Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces. Comment. Math. Univ. Carolinae 23 (1982), 657-669. MR 0687561 | Zbl 0517.34049
[15] B. N. SADOVSKII: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. MR 0428132
[16] A. STOKES: The application of a fixed-point theorem to a variety of nonlinear stability problems. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. MR 0104006
[17] J. SZARSKI: Differential inequalities. PWN, Warszawa 1965. MR 0190409 | Zbl 0135.25804
[18] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 16 (1968), 795-800. MR 0239238 | Zbl 0177.18902
[19] S. SZUFLA: Solutions sets of nonlinear equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 21 (1973), 971-976. MR 0344959 | Zbl 0272.34086
[20] S. SZUFLA: Some properties of the solutions set of ordinary differential equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 22 (1974), 675-678. MR 0355245 | Zbl 0289.34096
[21] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. MR 0492684 | Zbl 0384.34039
Partner of
EuDML logo