Previous |  Up |  Next

Article

References:
[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18. MR 0473939 | Zbl 0352.47027
[2] M. ALTMAN: An application of the method of contractor directions to nonlinear programming. Numer. Funct. Anal. and Optim. 1 (1979), 647-663. MR 0552245 | Zbl 0444.49021
[3] E. BISHOP R. R. PHELPS: The support functionals of a convex set. Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963. MR 0154092
[4] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364. MR 0425688
[5] A. BRØNDSTED: On a lemma of Bishop and Phelps. Pacific J. Math. 55 (1974), 335-341. MR 0380343
[6] A. BRØNDSTED: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. MR 0417867
[7] A. BRØNDSTED: Common fixed points and partial orders. Proc. Amer. Math. Soc. 77 (1979), 365-368. MR 0545597
[8] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds. J. Funct. Anal. 8 (1971), 250-274. MR 0288638 | Zbl 0228.47044
[9] F. E. BROWDER: On a theorem of Caristi and Kirk. Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976. MR 0461474 | Zbl 0379.54016
[10] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329 | Zbl 0305.47029
[11] W. J. CRAMER W. O. RAY: Solvability of nonlinear operator equations. Pacific J. Math. 95 (1981), 37-50. MR 0631657
[12] J. DANEŠ: A geometric theorem useful in nonlinear functional analysis. Boll. Un. Mat. Ital. 6 (1972), 369-375. MR 0317130
[13] D. DOWNING W. A. KIRK: A generalization of Caristi's theorem with applications to nonlinear mapping theory. Pacific J. Math. 69 (1977), 339-346. MR 0440426
[14] I. EKELAND: Sur les problèmes variationals. C.R. Acad. Sci. Paris, 275 (1972), 1057-1059. MR 0310670
[15] I. EKELAND: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. MR 0346619 | Zbl 0286.49015
[16] I. EKELAND: Nonconvex minimization problems. Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474. MR 0526967 | Zbl 0441.49011
[17] R. B. HOLMES: Geometric functional analysis and its applications. Springer Verlag, New York, 1975. MR 0410335 | Zbl 0336.46001
[18] S. KASAHARA: On fixed points in partially ordered sets and Kirk-Caristi theorem. Math. Sem. Notes Kobe Univ. 3 (1975), 229-232. MR 0405396 | Zbl 0341.54056
[19] W. A. KIRK: Caristi's fixed point theorem and metric convexity. Colloq. Math. 36 (1976), 81-86. MR 0436111 | Zbl 0353.53041
[20] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sci. 23 (1975), 891-894. MR 0385654
[21] C. KURATOWSKI: Topologie. vol. I, P.W.N., Warszawa, 1958. MR 0090795 | Zbl 0078.14603
[22] L. PASICKI: A short proof of the Caristi theorem. Comment. Math. 20 (1977/78), 427-428. MR 0519379
[23] S. I. POHOZHAYEV: On the normal solvability for nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43.
[24] J. SIEGEL: A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc. 66 (1977), 54-56. MR 0458403 | Zbl 0369.54022
[25] M. TURINICI: Maximal elements in partially ordered topological spaces and applications. An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264. MR 0533753
[26] M. TURINICI: Function lipschitzian mappings on convex metric spaces. Comment. Math. Univ. Carolinae 22 (1981), 289-303. MR 0620364 | Zbl 0497.54010
[27] M. TURINICI: Local and global lipschitzian mappings on ordered metric spaces. Math. Nachrichten, to appear. MR 0638331 | Zbl 0481.54008
[28] M. TURINICI: Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo, to appear. MR 0698680 | Zbl 0504.46008
[29] C. URSESCU: Sur le contingent dans les espaces de Banach. Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976. MR 0450943 | Zbl 0372.46019
[30] C. S. WONG: On a fixed point theorem of contractive type. Proc. Amer. Math. Soc. 57 (1976), 283-284. MR 0407826 | Zbl 0329.54042
[31] P. P. ZABREDCO M. A. KRASNOSELSKII: Solvability of nonlinear operator equations. (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44. MR 0283646
Partner of
EuDML logo