[1] M. ALTMAN:
Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18.
MR 0473939 |
Zbl 0352.47027
[2] M. ALTMAN:
An application of the method of contractor directions to nonlinear programming. Numer. Funct. Anal. and Optim. 1 (1979), 647-663.
MR 0552245 |
Zbl 0444.49021
[3] E. BISHOP R. R. PHELPS:
The support functionals of a convex set. Proc. Symp. Pure Math., vol. VII (Convexity), pp. 27-36, Amer. Math. Soc., Providence R.I., 1963.
MR 0154092
[4] H. BRÉZIS F. E. BROWDER:
A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364.
MR 0425688
[5] A. BRØNDSTED:
On a lemma of Bishop and Phelps. Pacific J. Math. 55 (1974), 335-341.
MR 0380343
[6] A. BRØNDSTED:
Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366.
MR 0417867
[7] A. BRØNDSTED:
Common fixed points and partial orders. Proc. Amer. Math. Soc. 77 (1979), 365-368.
MR 0545597
[8] F. E. BROWDER:
Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds. J. Funct. Anal. 8 (1971), 250-274.
MR 0288638 |
Zbl 0228.47044
[9] F. E. BROWDER:
On a theorem of Caristi and Kirk. Fixed Point Theory and its Applications, pp. 23-27, Academic Press, New York, 1976.
MR 0461474 |
Zbl 0379.54016
[10] J. CARISTI:
Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251.
MR 0394329 |
Zbl 0305.47029
[11] W. J. CRAMER W. O. RAY:
Solvability of nonlinear operator equations. Pacific J. Math. 95 (1981), 37-50.
MR 0631657
[12] J. DANEŠ:
A geometric theorem useful in nonlinear functional analysis. Boll. Un. Mat. Ital. 6 (1972), 369-375.
MR 0317130
[13] D. DOWNING W. A. KIRK:
A generalization of Caristi's theorem with applications to nonlinear mapping theory. Pacific J. Math. 69 (1977), 339-346.
MR 0440426
[14] I. EKELAND:
Sur les problèmes variationals. C.R. Acad. Sci. Paris, 275 (1972), 1057-1059.
MR 0310670
[16] I. EKELAND:
Nonconvex minimization problems. Bull. Amer. Math. Soc., N.S. 1 (1979), 443-474.
MR 0526967 |
Zbl 0441.49011
[17] R. B. HOLMES:
Geometric functional analysis and its applications. Springer Verlag, New York, 1975.
MR 0410335 |
Zbl 0336.46001
[18] S. KASAHARA:
On fixed points in partially ordered sets and Kirk-Caristi theorem. Math. Sem. Notes Kobe Univ. 3 (1975), 229-232.
MR 0405396 |
Zbl 0341.54056
[19] W. A. KIRK:
Caristi's fixed point theorem and metric convexity. Colloq. Math. 36 (1976), 81-86.
MR 0436111 |
Zbl 0353.53041
[20] W. A. KIRK J. CARISTI:
Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sci. 23 (1975), 891-894.
MR 0385654
[22] L. PASICKI:
A short proof of the Caristi theorem. Comment. Math. 20 (1977/78), 427-428.
MR 0519379
[23] S. I. POHOZHAYEV: On the normal solvability for nonlinear operators. (Russian), Dokl. Akad. Nauk SSSR 184 (1969), 40-43.
[24] J. SIEGEL:
A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc. 66 (1977), 54-56.
MR 0458403 |
Zbl 0369.54022
[25] M. TURINICI:
Maximal elements in partially ordered topological spaces and applications. An. St. Univ. "Al. I. Cuza" Iasi, 24 (1978), 259-264.
MR 0533753
[26] M. TURINICI:
Function lipschitzian mappings on convex metric spaces. Comment. Math. Univ. Carolinae 22 (1981), 289-303.
MR 0620364 |
Zbl 0497.54010
[27] M. TURINICI:
Local and global lipschitzian mappings on ordered metric spaces. Math. Nachrichten, to appear.
MR 0638331 |
Zbl 0481.54008
[28] M. TURINICI:
Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo, to appear.
MR 0698680 |
Zbl 0504.46008
[29] C. URSESCU:
Sur le contingent dans les espaces de Banach. Proc. Inst. Math. Iasi, pp. 183-184, Ed. Acad. RSR, Bucuresti, 1976.
MR 0450943 |
Zbl 0372.46019
[30] C. S. WONG:
On a fixed point theorem of contractive type. Proc. Amer. Math. Soc. 57 (1976), 283-284.
MR 0407826 |
Zbl 0329.54042
[31] P. P. ZABREDCO M. A. KRASNOSELSKII:
Solvability of nonlinear operator equations. (Russian), Funkc. Analiz i ego Prilož. 5 (1971), 42-44.
MR 0283646