[1] BROWDER F. E., PETRYSHYN W. V.:
Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces. J. Functional Anal. 39 (1968), 217-245.
MR 0244812
[2] BROWDER F. E., PETRYSHYN W. V.:
The topological degree and the Galerkin approximations for non-compact operator in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 641-646.
MR 0229100
[3] FITZPATRICK P. M.:
A generalized degree for uniform limits of $A$-proper mappings. J. Math. Anal. Appl. 35 (1971), 536-552.
MR 0281069 |
Zbl 0215.21304
[4] GAINES R. E., MAWHIN J. L.:
Coincidence degree and non-linear differential equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.) Springer-Verlag (1977).
MR 0637067
[5] GOLDENSTEIN L. S., GOHBERG I. Ts, MARKUS A. S.: Investigation of some properties of bounded linear opeгators in connection with their $q$-norm. Uch. Zap. Kishinev, Gos. Univ. 29 (1957), 29-36.
[6] HETZER G.:
Some remarks on $\phi_+$ opeгators and on the coincidence degree for Fгedholm equation with non-compact nonlineaг perturbation. Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508.
MR 0385653
[7] KRASNOSEL'SKII M. A.:
Some problems of nonlinear analysis. Amer. Math. Soc. Transl. (2) 10 (1958), 345-409.
MR 0094731
[8] KURATOWSKI C.: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[9] MAWHIN J.:
Equivalence Theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636.
MR 0328703 |
Zbl 0244.47049
[10] NUSSBAUM R. D.:
The fixed point index for local condensing maps. An. Mat. pura Appl. (4) 89 (1971), 217-258.
MR 0312341 |
Zbl 0226.47031
[11] NUSSBAUM R. D.:
Degree theory for local condensing maps. J. Math. Anal. Appl. 37 (1972), 741-766.
MR 0306986 |
Zbl 0232.47062
[12] TARAFDAR E.:
On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory I. Comment. Math. Univ. Carolinae 21 (1980), 805-823.
MR 0597769 |
Zbl 0463.47046
[13] VAINIKKO G. M., SADOVSKII B. N.:
On the rotation of condensing vector fields. (Russian), Probl. Matem., Analiza Slozhn. Sist. No. 2, Voronezh (1968), 84-88.
MR 0293469