Previous |  Up |  Next

Article

References:
[1] CARADUS S. R.: Perturbation theory for generalized Fredholm operators. Pacific J. Math. 52 (1974), 11-15. MR 0353034 | Zbl 0267.47010
[2] CARADUS S. R.: Perturbation theory for generalized Fred-holm operators, II. Transactions Amer. Math. Soc. 62 (1977), 72-76. MR 0435896
[3] DOLPH C. L., MINTY G. J.: On nonlinear integral equations of the Hammerstein type, "Integral Equations". Madison Univ. Press, lilladison, 111 (1964), 99-154. MR 0161113 | Zbl 0123.29603
[4] EHRMANN H.: Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben. Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. MR 0205123
[5] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential Equations. Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). MR 0637067
[6] HETZER G.: Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation. Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. MR 0385653
[7] HETZER G.: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Comment. Math. Univ. Carolinae 16 (1975), 121-138. MR 0364814 | Zbl 0298.47034
[8] KELLET J. L., NAMIOKA I.: Linear Topological Spaces. Graduate Texts in Mathematics, 36, Springer-Verlag (1964).
[9] MAWHIN J. : Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. MR 0328703
[10] TARAFDAR E.: On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II. Comment. Math. Univ. Carolinae 21 (1980). MR 0597769
Partner of
EuDML logo