Previous |  Up |  Next

Article

References:
[1] B. J. GARDNER: Semi-simple radical classes of algebras and attainability of identities. Pacific J. Math. 61 (1975), 401-416. MR 0399190
[2] B. J. GARDNER: Extension-closed varieties of rings need not have attainable identities. Bull. Malaysian Math. Soc. (2) 2 (1979), 37-39. MR 0545800 | Zbl 0393.17002
[3] I. N. HERSTEIN: Rings with periodic symmetric or skew elements. J. Algebra 30 (1974), 144-154. MR 0347884 | Zbl 0292.16006
[4] A. I. MAL'TSEV: Ob umnozhenii klassov algebraicheskikh sistem. Sibirskii Mat. Zhurnal 8 (1967), 346-365.
[5] W. S. MARTINDALE: Rings with involution and polynomial identities. J. Algebra 11 (1969), 186-194. MR 0234990 | Zbl 0192.37702
[6] S. MONTGOMERY: A generalization of a theorem of Jacobson. Proc. Amer. Math. Soc. 28 (1971), 366-370. MR 0276272
[7] S. MONTGOMERY: A generalization of a theorem of Jacobson II. Pacific J. Math. 44 (1973), 233-240. MR 0314892 | Zbl 0256.16009
[8] J. M. OSBORN: Varieties of algebras. Advances in Math. 8 (1972), 163-369. MR 0289587 | Zbl 0232.17001
[9] K. SALAVOVA: Radikaly kolets s involyutsiei 1. Comment. Math. Univ. Carolinae 18 (1977), 367-381. MR 0485962
[10] K. SALAVOVA: Radikaly kolets s involyutsiei 2. Comment. Math. Univ. Carolinae 18 (1977), 455-466.
[11] R. P. STANLEY: Zero square rings. Pacific J. Math. 30 (1969), 811-824. MR 0251062 | Zbl 0184.06301
Partner of
EuDML logo