[1] J. BANAŚ: Relative measures of noncompactness in Banach spaces. Ph.D. Thesis, Lublin 1978 (in Polish).
[2] J. BANAŚ K. GOEBEL:
Measures of noncompactness in Banach spaces. (preprint).
MR 0591679
[3] J. DANEŠ:
On densifying and related mappings and their applications in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56.
MR 0361946
[4] J. DANEŠ:
Some fixed point theorems in metric and Banach spaces. Comment. Math. Univ. Carolinae 12 (1971), 37-50.
MR 0287398
[5] G. DARBO:
Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova, 24 (1955), 84-92.
MR 0070164
[6] K. GOEBEL: Thickness of sets in metric spaces and its applications to the fixed point theory. Habilit. Thesis, Lublin 1970 (in Polish).
[7] K. GOEBEL W. RZYMOWSKI:
An existence theorem for the equation $x' - f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Ser. Math. Astronom. et Phys., 18, 7 (1970), 367-370.
MR 0269957
[8] I. T. GOHBERG L. S. GOLDENŠTEIN A. S. MARKUS: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. Zap. Kishinev. Un-ta, 29 (1957), 29-36 (in Russian).
[9] R. JANICKA W. KACZOR: On the construction of aome measures of noncompactness. Ann. Univ. Mariae Curie -Skłodovaka, Sectio A (preprint).
[10] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[11] B. N. SADOVSKIĬ:
Limit compact and condensing operators. Russian Math. Surveys, 27 (1972), 86-144.
MR 0428132
[12] B. N. SADOVSKIĬ:
On a fixed point principle. Funkc. Analiz i ego Přilož. 1 (1967), no. 2, 74-76 (in Russian).
MR 0211302