Previous |  Up |  Next

Article

References:
[1] Colloquium of finite and infinite set theory. Keszthely, Hungary, 10. Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1975.
[2] P. ERDÖS: Graph theory and probability. Canad. J. Math. 11 (1959), 34-38. MR 0102081
[3] P. ERDÖS: Problems and results of finite and infinite graphs. Recent advances in graph theory, Academia Praha (1975), 183-190. MR 0389669
[4] L. LOVÁSZ: On chromatic number of finite set-systems. Acta Math. Acad. Sci. Hunger. 19 (1968), 59-67. MR 0220621
[5] J. NEŠETŘIL V. RÖDL: A simple proof of the Galvin-Ramsey property of finite graphs and a dimension of a graph. Discrete Math. 23, 1 (1978), 49-56. MR 0523311
[6] J. NEŠETŘIL V. RÖDL: Partitions of vertices. Comment. Math. Univ. Carolinae 17 (1976), 85-95. MR 0412044
[7] J. NEŠETŘIL V. RÖDL: Type theory of partition properties of graphs. Recent advances in graph theory, Academia Praha (1975), 405-412. MR 0409259
[8] J. NEŠETŘIL V. RÖDL: Partitions of subgraphs. Recent advances in graph theory, Academia Praha (1975), 413-423. MR 0429655
[9] J. NEŠETŘIL V. RÖDL: A Ramsey graph without triangles exists for any graph without triangles. Colloquium on finite and infinite set theory, 10. Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam (1975), 1127-1132. MR 0392695
[10] V. RÖDL: A generalization of the Ramsey theorem. in: Graphs, hyper graphs and block systems, Zielona Gora (1976), 211-220.
[11] H. WALTHER H. J. VOSS: Über Kreise in Graphen. VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.
[12] F. HARARY: Graph Theory. Addison-Wesley, Reading, Mass., 1969. MR 0256911 | Zbl 0196.27202
Partner of
EuDML logo