[1] L. BABAI J. NEŠETŘIL: On infinite rigid graphs I and II. to appear.
[2] R. FRUCHT:
Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Math. 6 (1938), 239-250.
MR 1557026 |
Zbl 0020.07804
[3] Z. HEDRLÍN E. MENDELSOHN:
The category of graphs with given subgraph - with applications to topology and algebra. Canad. J. Math. 21 (1969), 1506-1517.
MR 0260608
[4] Z. HEDRLÍN A. PULTR:
Relations (graphs) with given finitely generated semigroup. Mhf. für Math. 68 (1964), 213-217.
MR 0168684
[5] Z. HEDRLÍN A. PULTR:
Symmetric relations (undirected graphs) with given semigroup. Mhf. für Math. 68 (1964), 318-322.
MR 0188082
[6] Z. HEDRLÍN A. PULTR:
On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406.
MR 0191858
[7] Z. HEDRLÍN:
Extensions of structures and full embeddings of categories. in: Proc. Intern. Congr. of Mathematicians, Nice, September 1970 (Gauthier-Villars, Paris, 1971).
MR 0419554
[8] P. HELL J. NEŠETŘIL:
Graphs and $k$-societies. Canad. Math. Bull. 13 (1970), 375-381.
MR 0276124
[10] V. KOUBEK:
Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolinae 18 (1977), 115-127.
MR 0457276 |
Zbl 0355.18006
[11] V. KOUBEK:
On categories into which each concrete category can be embedded. Cahiers Topo. et Géo. Diff. 17 (1976), 33-57.
MR 0417256 |
Zbl 0336.18005
[12] L. KUČERA: Úplná vnoření struktur. (Czech), Thesis, Prague 1973.
[13] E. MENDELSOHN:
On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294.
MR 0304533
[14] A. PULTR:
On full embeddings of concrete categories with respect to forgetful functor. Comment. Math. Univ. Carolinae 9 (1968), 281-305.
MR 0240166
[15] A. PULTR:
Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82.
MR 0230794 |
Zbl 0174.30002
[16] V. TRNKOVÁ:
Categorial aspects are useful for topology. general Topology and its Relation to modern Analysis and Algebra IV, Lecture Notes in Math. 609 (1977), 211-225.
MR 0458370
[17] P. VOPĚNKA A. PULTR Z. HEDRLÍN:
A rigid relation exists on any set. Comment. Math. Univ. Carolinae 6 (1965), 149-155.
MR 0183647