[1] J. BLIEDTNER W. HANSEN:
Simplicial cones in potential theory. Invent. Math. 29 (1975), 83-110.
MR 0387630
[2] M. BRELOT:
On topologies and boundaries in potential theory. Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin, 1971.
MR 0281940 |
Zbl 0222.31014
[3] A. BRUCKNER:
On derivatives with a dense set of zeros. Rev. Roumaine Math. Pures Appl.10 (1965), 149-153.
MR 0183829 |
Zbl 0138.27902
[4] M. CHAIKA:
The Lusin-Menchoff theorem in metric space. Indiana Univ. Math. J. 21 (1971), 351-354.
MR 0291396 |
Zbl 0228.28007
[5] C. CONSTANTINESCU A. CORNEA:
Potential theory on harmonic spaces. Berlin - Keidelberg - New York, Springer, 1972.
MR 0419799
[6] B. FUGLEDE:
Finely harmonic functions. Lecture Notes in Mathematics No. 289, Springer-Verlag, Berlin, 1972.
MR 0450590 |
Zbl 0248.31010
[7] B. FUGLEDE:
Remarks on fine continuity and the base operation in potential theory. Math. Ann. 210 (1974), 207-212.
MR 0357826 |
Zbl 0273.31014
[8] C. GOFFMAN C. NEUGEBAUER T. NISHIURA:
Density topology and approximate continuity. Duke Math. J. 28 (1961), 497-505.
MR 0137805
[10] M. LACZKOVICH G. PETRUSKA:
A theorem on approximately continuous functions. Acta Math. Acad. Sci. Hung. 24 (1973), 383-387.
MR 0325871
[11] M. LACZKOVICH G. PETRUSKA:
Baire $1$ functions, approximately continuous functions and derivatives. Acta Math. Acad. Sci. Hung. 25 (1974), 189-212.
MR 0379766
[12] J. S. LIPIŃSKI:
Sur les dérivées de Pompeiu. Rev. Roumaine Math. Pures Appl. 10 (1965), 447-451.
MR 0193192
[13] J. LUKEŠ L. ZAJÍČEK:
When finely continuous functions are of the first class of Baire. to appear.
MR 0457646
[14] S. MARCUS:
Sur les dérivées dont les zéros forment un ensemble frontière partout dense. Rend. Circ. Mat. Palermo 2 (1963), 1-36.
MR 0167572 |
Zbl 0124.03202
[15] I. MAXIMOFF:
On density points and approximately continuous functions. Tôhoku Math. J. 47 (1940), 237-250.
MR 0004283 |
Zbl 0024.30401
[16] D. PREISS:
Limits of approximately continuous functions. Czechoslovak Math. J. 21 (1971), 371-372.
MR 0286947 |
Zbl 0221.26005
[17] S. SCHEINBERG:
Topologies which generate a complete measure algebra. Advan. in Math. 7 (1971), 231-239.
MR 0286965 |
Zbl 0227.28009