[1] P. M. ANSELONE:
Collectively Compact Operator Approximation Theory. Prentice-Hall, Englewood Cliffs, New Jersey (1971).
MR 0443383 |
Zbl 0228.47001
[2] P. M. ANSELONE J. W. LEE:
Spectral properties of integral operators with nonnegative kernels. Linear Algebra and its Appl. 9, 67-87 (1974).
MR 0361905
[4] F. L. BAUER E. DEZTSCH J. STOER:
Abschätzungen für Eigenwerte positiver linearer Operatoren. Linear Algebra and its Appl. 2, 275-301 (1969).
MR 0245587
[5] G. BIRKHOFF:
Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc. 85, 219-227 (1957).
MR 0087058 |
Zbl 0079.13502
[6] E. DEUTSCH, Ch. ZENGER:
Inclusion domains for the eigenvalues of stochastic matrices. Numer. Math. 18, 182-192 (1971).
MR 0301908
[7] G. FROBENIUS: Über Matrizen aus positiven Elementen. Akad. Wiss. Berlin, 471-476 (1908).
[8] G. FROBENIUS: Über Matrizen aus nicht negativen Elementen. Akad. Wiss. Berlin, 456-477 (1912).
[9] E. HOPF:
An inequality for positive linear integral operators. J. of Math, and Mech. 12, 683-692 (1963).
MR 0165325 |
Zbl 0115.32501
[10] R. JENTZSCH: Über Integralgleichungen mit positlvem Kern. Crelles Journal 141, 235-244 (1912).
[11] I. MAREK:
Spektrale Eigenschaften der $K$-positiven Operatoren und Einschliessungssätze für den Spektralradius. Czechosl. math. J. 16 (91), 493-517 (1966).
MR 0217622 |
Zbl 0152.33701
[12] A. OSTROWSKI:
Positive matrices and functional analysis. in Recent Advances in Matrix Theory, Univ. of Wisconsin Press, Madison 81-101 (1964).
MR 0169858 |
Zbl 0135.01504
[13] O. PERRON: Zur Theorie der Matrizen. Math. Ann. 64, 248-263 (1908).