[1] H. R. BENNETT T. G. McLAUGHLIN:
A selective survey of axiom-sensitive results in general topology. Texas Tech University Math. Series, no 12.
MR 0401479
[2] H. BLUMBERG:
New properties of all real functions. Trans. Amer. Math. Soc. 24 (1922), 115-128.
MR 1501216
[3] J. C. BRADFORD C. GOFFMAN:
Metric spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 11 (1960), 667-670.
MR 0146310
[4] C. CONSTANTINESCU A. CORNEA:
Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972.
MR 0419799
[5] C. GOFFMAN D. WATERMAN:
Approximately continuous transformations. Proc. Amer. Math. Soc. 12 (1961) 9 116-121.
MR 0120327
[6] R. LEVY:
A totally ordered Baire space for which Blumberg's theorem fails. Proc. Amer. Math. Soc. 41 (1973), 304.
MR 0324630 |
Zbl 0244.54009
[8] W. A. R. WEISS:
A solution to the Blumberg problem. Bull. Amer. Math. Soc. 81 (1975), 957-958.
MR 0391003 |
Zbl 0316.54011
[9] Jr H. E. WHITE:
Topological spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 44 (1974), 454-462.
MR 0341379 |
Zbl 0295.54017
[10] Jr H. E. WHITE:
Some Baire spaces for which Blumberg's theorem does not hold. Proc. Amer. Math. Soc. 51 (1975), 477-482.
MR 0410691 |
Zbl 0307.54012