Previous |  Up |  Next

Article

References:
[1] H. R. BENNETT T. G. McLAUGHLIN: A selective survey of axiom-sensitive results in general topology. Texas Tech University Math. Series, no 12. MR 0401479
[2] H. BLUMBERG: New properties of all real functions. Trans. Amer. Math. Soc. 24 (1922), 115-128. MR 1501216
[3] J. C. BRADFORD C. GOFFMAN: Metric spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 11 (1960), 667-670. MR 0146310
[4] C. CONSTANTINESCU A. CORNEA: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. MR 0419799
[5] C. GOFFMAN D. WATERMAN: Approximately continuous transformations. Proc. Amer. Math. Soc. 12 (1961) 9 116-121. MR 0120327
[6] R. LEVY: A totally ordered Baire space for which Blumberg's theorem fails. Proc. Amer. Math. Soc. 41 (1973), 304. MR 0324630 | Zbl 0244.54009
[7] R. LEVY: Strongly non-Blumberg spaces. General Topology and Appl. 4 (1974), 173-177. MR 0343232 | Zbl 0283.54006
[8] W. A. R. WEISS: A solution to the Blumberg problem. Bull. Amer. Math. Soc. 81 (1975), 957-958. MR 0391003 | Zbl 0316.54011
[9] Jr H. E. WHITE: Topological spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 44 (1974), 454-462. MR 0341379 | Zbl 0295.54017
[10] Jr H. E. WHITE: Some Baire spaces for which Blumberg's theorem does not hold. Proc. Amer. Math. Soc. 51 (1975), 477-482. MR 0410691 | Zbl 0307.54012
Partner of
EuDML logo