Previous |  Up |  Next

Article

References:
[1] A. D. ALEXANDROFF: Additive set functions in abstract spaces. Mat. Sbornik 50 (1940), 30-348; 51 (1941), 563-628; 55 (1943), 169-238. MR 0012207 | Zbl 0023.39701
[2] R. L. BLAIR A. W. HAGER: Extensions of zero-sets and of real-valued functions. Math. Zeit. 136 (1974), 41-52. MR 0385793
[3] R. ENGELKING: Outline of General Topology. Amsterdam, 1968. MR 0230273 | Zbl 0157.53001
[4] Z. FROLÍK: Three uniform spaces associated with realvalued functions. Proc. Rome conference on rings of continuous functions 1973, to appear. MR 0375243
[5] Z. FROLÍK: On uniform spaces. Comment. Math. Univ. Carolinae 16 (1975), 189-199. MR 0370516
[6] L. GILLMAN M. JERISON: Rings of Continuous Functions. D. van Nostrand Co., 1960. MR 0116199
[7] H. GORDON: Rings of functions determined by zero-sets. Pac. J. Math. 36 (1971), 1331-157. MR 0320996 | Zbl 0185.38803
[8] A. W. HAGER: On inverse-closed subalgebras of $C(X)$. Proc. London Math. Soc. (3) 19 (1969), 233-257. MR 0244948 | Zbl 0169.54005
[9] A. W. HAGER: An approximation technique for real-valued functions. Gen. Top. and Appl. 1 (1971), 415-418. MR 0291704 | Zbl 0219.54010
[10] A. W. HAGER: An approximation technique for real-valued functions, 2. preprint 1972. MR 0291704
[11] A. W. HAGER: Some nearly fine uniform spaces. Proc. London Math. Soc. (3) 28 (1974), 517-546. MR 0397670 | Zbl 0284.54017
[12] A. W. HAGER: Uniformities induced by proximity, cozero- and Baire sets. to appear.
[13] P. HAUSDORFF: Set Theory. (Chelsea Reprint) New York, 1957. Zbl 0081.04601
[14] R. D. MAULDIN: On the Baire system generated by a linear lattice of functions. Fund. Math. 68 (1970), 51-59. MR 0273363 | Zbl 0197.38104
[15] S. G. MRÓWKA: Characterization of classes of functions by Lebesque sets. Czech. Math. J. 19 (1969), 738-744. MR 0248291
Partner of
EuDML logo