Previous |  Up |  Next

Article

References:
[1] B. BALCAR: A theorem on supports in the theory of semisets. Comment. Math. Univ. Carolinae 14 (1973), 1-6. MR 0340015 | Zbl 0281.02060
[2] B. BALCAR: Teorie polomnožin. (thesis).
[3] K. ČUDA: Contributions to the theory of semisets III. Zeitschr. f. Math. Log. (to appeaг).
[4] A. A. FRAENKEL Y. BAR-HILLEL A. LEVY: Foundations of set theory. North-Holland P. C. 1973. MR 0345816
[5] P. HÁJEK: On semisets. in: Logic Colloquium '69, North-Holland P. C. 1971, p. 67-76. MR 0289286
[6] P. HÁJEK: Contributions to the theory of semisets I. Zeitschr. f. Math. Log. 18 (1972), 241-248. MR 0307914
[7] P. HÁJEK: Degrees of dependence in the theory of semisets. to appear in Fund. Math. (Mostowski's volume). MR 0373890
[8] P. HÁJEK D. HARMANCOVÁ: On generalized credence functions. Kybernetika (to appeaг).
[9] G. KREISEL J. L. KRIVINE: Modelltheorie. Springer Verlag, 1972. MR 0351743
[10] J. MLČEK A. SOCHOR: Contributions to the theory of semisets II. Zeitschr. f. Math. Log. 18 (1972), 407-427. MR 0414357
[11] A. MOSTOWSKI: Recent results in Set theory. in: Problems in the philosophy of mathematics (Lakatos - ed.), North-Holland P. C. 1967, 82-96.
[12] G. H. MÜLLER: An old philosophical question - and the recent гesults in the foundations of mathematics. ibid. p. 133-135.
[13] R. PARIKH: On existence and feasibility in arithmetic. Journ. Symb. Log. 36 (1971), 494-508. MR 0304152
[14] J. R. SHOENFIELD: Mathematical Logic. Addison-Wesley, 1967. MR 0225631 | Zbl 0155.01102
[15] A. SOCHOR: On semisets defined by non-normal formulas. (in pгeparation). Zbl 0319.02058
[16] P. VOPӖNKA: The theory of semisets. in: Proc. Int. Congr. of Math. Nice, Gauthier-Villars 1971, p. 255-260. MR 0439633
[17] P. VOPĚNKA P. HÁJEK: The theory of semisets. Academia Prague and North-Holland P. C. 1972. MR 0444473
[18] P. ŠTĚPÁNEK: Některé podmodely ultrapгoduktu. (thesis),
Partner of
EuDML logo