[1] P. J. COHEN: The independence of the axiom of choice. mimeographed, Stanford Univ. 1963.
[2] K. GÖDEL: The consistency of the axiom of choice [ ...]. Princeton Univ. Press 1940.
[3] P. HÁJEK, P. VOPĚNKA:
Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966), 1-7.
MR 0194321
[4] A. HAJHAL:
On a consistency theorem connected with the generalized continuum problem. Zeitschr. Math. Logik 2 (1956), 131-136.
MR 0091914
[5] T. JECH, P. VOPĚNKA: Generalized Souslin's hypothesis. to appear in Zeitschr. math. Logik.
[6] A. S. JESENIN, VOL'PIN:
Nedokazuemost gipotezy Suslina bez pomošči aksiomy vybora [...]. (in Russian), Doklady Akad. Nauk SSSR 96 (1954), 9-12.
MR 0062694
[7] P. KUREPA:
L'hypothèse de ramification. Comptes Rendus Acad. Sci. Paris 202 (1936), 185-187.
Zbl 0014.39402
[8] A. LÉVY:
Indépendence conditionnelle de $V=L$ [.. ]. ibid., 245 (1957), 1582-3.
MR 0089155
[9] A. LÉVY:
A generalization of Gödel's notion of constructibility. Journ. Symb. Logic 25 (1960), 147-155.
MR 0142468 |
Zbl 0119.25204
[11] J. R. SHOENFIELD:
On the independence of the axiom of constructibility. ibid., 81 (1959), 537-540.
MR 0106833 |
Zbl 0201.32702
[12] W. SIERPIŃSKI:
Sur un problème de la théorie générale des ensembles équivalent au problème de Souslin. Fund. Math. 35 (1948), 165-174.
MR 0027817
[13] M. J. SOUSLIN: Problème 3. ibid., 1 (1920), 223.
[14] P. VOPĚNKA:
The limit of sheaves [...]. Bull. Acad. Polon. Sci. 13 (1965), 189-192.
MR 0182570
[15] P. VOPĚNKA:
On $\nabla $-model of set theory. ibid., 13 (1965), 267-272.
MR 0182571
[16] P. VOPĚNKA:
Properties of $\nabla $ -model. ibid., 13 (1965), 441-444.
MR 0189984
[17] P. VOPĚNKA:
$\nabla $ -models in which GCH does not hold. ibid., 14 (1966), 95-99.
MR 0200142
[18] P. VOPĚNKA:
General theory of $\nabla $ -models. Comment. Math. Univ. Carolinae 8 (1967).
MR 0214460