Previous |  Up |  Next

Article

Keywords:
unilateral boundary value problem; grid relocation; finite element methods; Poisson equation; numerical examples; nonlinear optimization; sequential quadratic programming code; FE-grid relocation
Summary:
We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional means a decrease of the discretization error or a better approximation of the unilateral boundary conditions. Design sensitivity analysis is given with respect to the movement of nodal points. Numerical results for the Dirichlet-Signorini problem for the Laplace equation and the plane elasticity problem with unilateral boundary conditions are given. In plane elasticity we consider problems with and without friction.
References:
[1] Babuška I., Rank E.: An expert-system-like feedback approach in the fop-version of the finite element method. Finite Elements in Analysis and Design 3 (1987), 127-149.
[2] Babuška I., Zienkiewicz O.C., Gago J., de A. Oliveira E.R. (eds.): Accuracy Estimates and Adaptive Refinements in Finite Element Computations. J. Wiley & Sons, Chichester, 1986. MR 0879442
[3] Blum H., Lin Q., Rannacher R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numerische Mathematik 49 (1986), 11-37. DOI 10.1007/BF01389427 | MR 0847015 | Zbl 0594.65082
[4] Ciarlet P.G.: The Finite Element Method for elliptic problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[5] Delfour M., Payre G., Zolésio J. P.: An optimal triangulation for second-order elliptic problems. Computational Methods in Applied Mechanics and Engineering 50 (1985), 231-261. DOI 10.1016/0045-7825(85)90095-7 | MR 0800331
[6] Guo B., Babuška I.: The h-p version of the finite element method. Computational Mechanics, Part 2 1 (1986), 203-220. DOI 10.1007/BF00272624
[7] Eriksson K., Johnson C.: An adaptive finite element method for linear elliptic problems. Mathematics of Computation 50 (1988), 361-383. DOI 10.1090/S0025-5718-1988-0929542-X | MR 0929542 | Zbl 0644.65080
[8] Haslinger J., Neittaanmäki P.: Finite Element Approximation of Optimal Shape Design. Theory and Approximation. John Wiley & Sons, London, 1988. MR 0982710
[9] Haslinger J., Neittaanmäki P., Salmenjoki K.: On optimal mesh design for FEM in unilateral boundary value problems. MAFELAP VI, (J.R. Whiteman ed.) (1988), 103-114, Academic Press, London. MR 0956891
[10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical Solution of Variational Inequalities. Springer Series in Applied Mathematical Sciences 66, Springer-Verlag, Berlin, 1988.
[11] Jarusch H.: On an adaptive grid refining technique for finite element approximations. SIAM Journal of Scientific and Statical Computations 4 (1986), 1105-1120. DOI 10.1137/0907075 | MR 0857785
[12] Kikuchi N.: Finite Element Methods in Mechanics. Cambridge University Press, London, 1986. Zbl 0587.73102
[13] Kikuchi N., Oden J. T.: Contact Problems in Elasticity. SIAM Studies in Applied Mathematics, Philadelphia, 1988. MR 0961258 | Zbl 0685.73002
[14] Křížek M., Neittaanmäki P.: On supercoiivergence techniques. Acta Applic. Math. 9 (1987), 175-198. DOI 10.1007/BF00047538 | MR 0900263
[15] Pironneau O.: Optimal shape design for elliptic systems. Springer-Verlag, Berlin, 1984. MR 0725856 | Zbl 0534.49001
Partner of
EuDML logo