Previous |  Up |  Next

Article

Keywords:
bifurcation phenomena; heteroclinic points; discrete dynamical systems; dynamical system; diffeomorphism
Summary:
The paper deals with the bifurcation phenomena of heteroclinic orbits for diffeomorphisms. The existence of a Melnikov-like function for the two-dimensional case is shown. Simple possibilities of the set of heteroclinic points are described for higherdimensional cases.
References:
[1] M. Medveď: Dynamical Systems. (Slovak). Veda, Bratislava 1988. MR 0982929
[2] S. Smale: Differentiable dynamical systems. Bull. Amer. Math. Soc. V. 73 (1967), 747- 817. DOI 10.1090/S0002-9904-1967-11798-1 | MR 0228014 | Zbl 0202.55202
[3] V. K. Melnikov: On the stability of the center for the time periodic solutions. Trans. Moscow Math. Soc. V. 12 (1963), 3-56. MR 0156048
[4] K. J. Palmer: Exponential dichotomies and transversal homoclinic points. J. Diff. Equations V. 55 (1984), 225-256. DOI 10.1016/0022-0396(84)90082-2 | MR 0764125 | Zbl 0508.58035
[5] M. Golubitsky V. Guillemin: Stable Mappings and their Singularities. Springer-Verlag, New York, Heidelberg, Berlin, 1973, Mir Moskva, 1977. MR 0467801
[6] D. Henry: Geometric Theory of Semilinear Parabolic Equations. LNM 840, Springer-Verlag, New York, Berlin, 1981. MR 0610244 | Zbl 0456.35001
[7] Z. Nitecki: Differentiable Dynamics. The MIT Press, Cambridge, Massachusetts, London, 1971. Mir, Moskva, 1975. MR 0649788 | Zbl 0246.58012
[8] S. N. Chow J. K. Hale J. Mallet-Paret: An example of bifurcation to homoclinic orbits. J. Differ. Equations V. 37 (1980), 351-373. DOI 10.1016/0022-0396(80)90104-7 | MR 0589997
[9] Th. Bröcker L. Lander: Differentiable Germs and Catastrophes. Cambridge Univ. Press, Cambridge, 1975, Mir. Moskva, 1977. MR 0494220
[10] S. N. Chow J. K. Hale: Methods of Bifurcation Theory. Springer-Verlag, New York, Berlin, Heidelberg, 1982. MR 0660633
Partner of
EuDML logo