Previous |  Up |  Next

Article

Title: On the regularity of solutions of a thermoelastic system under noncontinuous heating regimes. II (English)
Author: Jarušek, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 3
Year: 1991
Pages: 161-180
Summary lang: English
.
Category: math
.
Summary: A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain. (English)
Keyword: quasilinear heat equation
Keyword: Lamé system
Keyword: noncontinuous heating regimes
Keyword: Sobolev spaces
Keyword: Fourier transformation
Keyword: supports
Keyword: boundedness and continuity of the stresses with respect to space variables and in time
MSC: 35B60
MSC: 35B65
MSC: 35K60
MSC: 35M05
MSC: 35R05
MSC: 73B30
MSC: 73U05
MSC: 74A15
MSC: 74B99
MSC: 80A20
idZBL: Zbl 0771.73008
idMR: MR1109122
DOI: 10.21136/AM.1991.104457
.
Date available: 2008-05-20T18:41:32Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104457
.
Reference: [1] O. V. Běsov V. P. Iljin S. M. Nikoľskij: Integral Transformations of Functions and Imbedding Theorems.(in Russian). Nauka, Moskva 1975.
Reference: [2] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Math. 24, Pitman, Ibston - London - Melbourne 1985. Zbl 0695.35060, MR 0775683
Reference: [3] P. Grisvard: Problèmes aux limites dans les polygones. Mode d'emploi.EDF Bull. Direct. Etud. Rech. Ser. C - Math. Inform. (1986), 21-59. Zbl 0623.35031, MR 0840970
Reference: [4] J. Jarušek: Contact problems with bounded friction. Coercive case.Czech. Math. J. 33 (108) (1983), 237-261. MR 0699024
Reference: [5] J. Jarušek: On the regularity of solutions of a thermoelastic system under noncontinuous heating regime.Apl. Mat. 35 (1990) 6, 426-450. MR 1089924
Reference: [6] V. A. Kondratěv: Elliptic boundary value problems with conical or angular points.(in Russian). Trudy Mosk. Mat. Obšč., Vol. 16 (1967), 209-292. MR 0226187
Reference: [7] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces.Teubner-Texte Math. Vol. 100, Teubner V., Leipzig 1987. MR 0926688
Reference: [8] O. A. Ladyženskaya V. A. Solonnikov N. N. Uraltseva: Linear and Quasilinear Equations of Parabolic Type.(in Russian), Nauka, Moskva 1967.
Reference: [9] J. L. Lions E. Magenes: Problèrnes aux limites non-homogènes et applications.Dunod, Paris 1968.
Reference: [10] V. G. Maz'ja B. A. Plameněvskij: On the coefficients in asymptotics of solutions of elliptic boundary value problems in domains having conical points.(in Russian), Math. Nachr.76 (1977), 29-60. MR 0601608
Reference: [11] A. M. Sänding U. Richter R. Sänding: The regularity of boundary value problems for the Lamé equation in polygonal domain.Rostock Math. Kolloq. 36 (1989), 21 - 50.
Reference: [12] A. Visintin: Sur le problème de Stefan avec flux non-linéaire.Preprint No 230, Ist. Anal. Numer, C. N. R. Pavia, Pavia 1981. Zbl 0478.35084, MR 0631569
.

Files

Files Size Format View
AplMat_36-1991-3_1.pdf 2.538Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo