Article
Keywords:
necessary and sufficient conditions for an existence; Bayes invariant quadratic unbiased estimate; linear function of variance components; mixed linear model; three unknown variance components; normal case
Summary:
In the paper necessary and sufficient conditions for the existence and an explicit expression for the Bayes invariant quadratic unbiased estimate of the linear function of the variance components are presented for the mixed linear model $\bold{t=X\beta + \epsilon}$, $\bold{E(t)=X\beta}$, $\bold {Var(t)=0_1U_1 + 0_2U_2 + 0_3U_3}$, with three unknown variance components in the normal case. An application to some examples from the analysis of variance is given.
References:
[2] J. Kleffe R. Pincus:
Bayes and best quadratic unbiased estimators for parameters of the covariance matrix in a normal linear model. Math. Operationsf. Statist. 5 (1974), 43 - 67.
DOI 10.1080/02331887408801147 |
MR 0341683
[4] C. R. Rao:
Linear Statistical Inference and Its Applications. 2nd ed. J. Wiley, New York 1973.
MR 0346957 |
Zbl 0256.62002
[6] J. Stuchlý:
Bayes unbiased estimation in a model with two variance components. Aplikace matematiky 32, No. 2 (1987), 120-130.
MR 0885759
[7] S. Zacks:
The Theory of Statistical Inference. J. Wiley, New York, 1971.
MR 0420923