Article
Keywords:
domain optimization; triangular finite element spaces; cost functionals
Summary:
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.
References:
[1] D. Begis R. Glowinski:
Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169.
DOI 10.1007/BF01447854 |
MR 0443372
[2] B. Mercier G. Raugel:
Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et series de Fourier en $\theta$. R. A. I. R. O. , Anal. numér., 16 (1982), 405-461.
MR 0684832
[3] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[4] H. Triebel:
Interpolation Theory, Function Spaces, Differential Operators. DVW, Berlin 1978.
MR 0503903 |
Zbl 0387.46033
[5] P. G. Ciarlet:
The finite element method for elliptic problems. North- Holland, Amsterdam 1978.
MR 0520174 |
Zbl 0383.65058