Previous |  Up |  Next

Article

Keywords:
surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms
Summary:
The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms.
References:
[1] C. de Boor: A practical guide to splines. Springer, N. Y. 1978. MR 0507062 | Zbl 0406.41003
[2] J. Kobza: On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88, Math. XXVI (to appear) MR 1033338 | Zbl 0693.65005
[3] J. Kobza: Evaluation and mapping of parabolic interpolating spline. (Czech). Knižnica algoritmov, IX. diel, str. 51-58; JSMF Bratislava 1987.
[4] В. Л. Макаров В. В. Хлобыстов: Сплайн-аппроксимация функций. Москва, Наука 1983. Zbl 1229.47001
[5] С. Б. Стечкин И. H. Субботин: Сплайны в вычислительной математике. Москва, Наука 1976. Zbl 1226.05083
[6] M. Schultz: Spline analysis. Prentice-Hall, N. J. 1973. MR 0362832 | Zbl 0333.41009
[7] Ю. С. Завялое Б. И. Квасов В. Л. Мирошниченко: Методы сплайн-функций. Москва, Наука 1980. Zbl 1229.60003
Partner of
EuDML logo